CONNECTION DIAGRAM PINOUT A

9342 93S42

CARRY LOOKAHEAD GENERATOR

DESCRIPTION — The '42 is a high speed lookahead carry generator. It is generally used with the 9341 (54/74181) 4-bit arithmetic logic unit to provide high speed lookahead over word lengths of more than four bits. The lookahead carry generator is fully compatible with all members of the TTL family.

• PROVIDES LOOKAHEAD CARRIES ACROSS A GROUP OF FOUR ALU'S

• MULTI-LEVEL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION OVER LONG WORD LENGTHS

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE	
PKGS	оит	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$		
Plastic DIP (P)	A	9342PC, 93S42PC		9B	
Ceramic DIP (D)	A	9342DC, 93S42DC	9342DM, 93S42DM	7B	
Flatpak (F)	A	9342FC, 93S42FC	9342FM, 93S42FM	4L	

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93S (U.L.) HIGH/LOW		
Cn	Carry Input	1.0/1.0	1.25/1.25		
$\overline{G}_0, \overline{G}_2$	Carry Generate Inputs (Active LOW)	7.0/7.0	8.75/8.75		
G1	Carry Generate Input (Active LOW)	8.0/8.0	10/10		
G ₃	Carry Generate Input (Active LOW)	4.0/4.0	5.0/5.0		
P0, P1	Carry Propagate Inputs (Active LOW)	4.0/4.0	5.0/5.0		
P2	Carry Propagate Input (Active LOW)	3.0/3.0	3.75/3.75		
P ₃	Carry Propagate Input (Active LOW)	2.0/2.0	2.5/2.5		
$C_n + x - C_n + z$	Carry Outputs	20/10	25/12.5		
G	Carry Generate Output (Active LOW)	20/10	25/12.5		
P	Carry Propagate Output (Active LOW)	20/10	25/12.5		

16 Vcc G1 1 15 P2 P1 2 14 G2 Go 3 13 C. P0 4 G3 5 12 Cn+x 11 Cn+y P3 6 10 G P 7 9 Cn+z GND 8

FUNCTIONAL DESCRIPTION — The '42 lookahead carry generator accepts up to four pairs of active LOW Carry Propagate ($\overline{P}_0 - \overline{P}_3$) and Carry Generate ($\overline{G}_0 - \overline{G}_3$) signals and an active HIGH Carry input (C_n) and provides anticipated active HIGH carries ($C_n + x$, $C_n + y$, $C_n + z$) across four groups of binary adders. The '42 also has active LOW Carry Propagate (\overline{P}) and Carry Generate (\overline{G}) outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are:

 $\begin{array}{l} C_{n+x} = G_0 + P_0 C_n \\ C_{n+y} = G_1 + P_1 G_0 + P_1 P_0 C_n \\ C_{n+z} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_n \\ \overline{G} = \overline{G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0} \\ \overline{P} = \overline{P_3 P_2 P_1 P_0} \end{array}$

Also, the '42 can be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections (*Figure a*) to and from the ALU to the lookahead carry generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last 93S41.

INPUTS								OUTPUTS					
Cn	Ğ٥	P ₀	Ğ١	P ₁	₫2	P ₂	G ₃	P ₃	Cn+x	Cn+y	Cn+z	G	P
x	н	н							L				
L	н	Х							L				
х	L	х							н				
Н	х	L							н				
х	х	Х	н	н						L			
х	н	н	н	Х						L			
L	н	Х	н	Х						L			
х	Х	Х	L	Х						н			
х	L	Х	Х	L						н			
н	х	L	х	L						н			
х	х	x	х	Х	н	н					L		
х	х	х	н	н	н	Х					L		
х	н	н	н	Х	н	Х					L		
L	н	Х	н	Х	н	х					L		
х	Х	Х	Х	Х	L	х					н		
х	Х	Х	L	Х	х	L					н		
х	L	Х	Х	L	Х	L			Į		н		
н	х	L	х	L	х	L					н		
	х		х	х	х	х	н	н				н	
	х		Х	Х	н	н	н	Х				н	
	х		н	н	н	Х	н	Х				н	
	н		н	Х	н	X	н	X				н	
	Х		X	Х	X	Х	L	X	1			L	
	X		X	X	L	X	Х	L				L	
	X		L	X	X	L	X	L				L	
	L		х	L	х	L	х	L				L	
		н		Х		Х		Х					н
		х		н		Х		х					н
		х		х		Н		Х					н
		х		X		X		н					Н
		L		L		L		L					L

TRUTH TABLE

X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)									
SYMBOL	PARAMETER	PARAMETER			935		UNITS	CONDITIONS	
01		Min	Max	Min	Max				
los	Output Short Circuit Curre	-40	-100	-40	-100	mA	V _{CC} = Max		
Іссн	Power Supply Current (All Outputs HIGH)		35 39		45	mA	$V_{CC} = Max; \overline{P}_3, \overline{G}_3 = 4.5 V$ All Other Inputs = Gnd		
ICCL	Power Supply Current (All Outputs LOW)	65 80 72 80			80	mA	$V_{CC} = Max$ $\overline{G}_0, \overline{G}_1, \overline{G}_2 = 4.5 V$ All Other Inputs = Gnd		
	ACTERISTICS: V _{CC} = +5.0 V	′, T _A =	+25° C) (See §	Section	n 3 for	waveforms a	and load configurations)	
			93	3XX	9	3S			
SYMBOL	PARAMETER	CL = RL =	15 pF 400 Ω	C _L =	15 pF	UNITS	CONDITIONS		
			Min	Max	Min	Мах			
tPLH tPHL	Propagation Delay C _n to C _n + _x , C _n + _y , C _n + _z		16 19		10 11.5	ns	Figs. 3-1, 3-5 $\overline{P}_0, \overline{P}_1, \overline{P}_2 = Gnd$ $\overline{G}_0, \overline{G}_1, \overline{G}_2 = 4.5 V$		
tPLH tPHL	Propagation Delay P_0 , P_1 , or P_2 to $C_n + x$, $C_n + y$, $C_n + z$			13 14		7.0 7.0	ns	Figs. 3-1, 3-4 $\overline{P}_x = Gnd$ (if not under test) $C_n, \overline{G}_0, \overline{G}_1, \overline{G}_2 = 4.5 V$	
tPLH tPHL	Propagation Delay \overline{G}_0 , \overline{G}_1 , or \overline{G}_2 to $C_n + x$, $C_n + y$, $C_n + z$			13 14		7.0 7.0	ns	Figs. 3-1, 3-4 $\overline{G}_x = 4.5 V$ (if not under test) $C_n, \overline{P}_0, \overline{P}_1, \overline{P}_2 = Gnd$	
tPLH tPHL	Propagation Delay $\overline{P}_1, \overline{P}_2$ or \overline{P}_3 to \overline{G}			16 19		7.5 10.5	ns	Figs. 3-1, 3-5 $\overline{P}_x = Gnd$ (if not under test) \overline{G}_n , $C_n = 4.5$ V	
tpLH tpHL	Propagation Delay \overline{G}_n to \overline{G}			16 19		7.5 10.5	ns	Figs. 3-1, 3-5 $\overline{G}_{x} = 4.5 V$ (if not under test) $\overline{P}_{1}, \overline{P}_{2}, \overline{P}_{3} = Gnd$	
tPLH tPHL	Propagation Delay Pn to P			16 19		6.5 10	ns	Figs. 3-1, 3-5 $\overline{P}_x = Gnd$ (if not under test)	