negation outputs are provided.

- MULTIFUNCTION CAPABILITY

- ON-CHIP SELECT LOGIC DECODING

ORDERING CODE: See Section 9

PKGS	$\begin{aligned} & \text { PIN } \\ & \text { OUT } \end{aligned}$	COMMERCIAL GRADE	MILITARY GRADE	PKG TYPE
		$\begin{aligned} & V C C=+5.0 \mathrm{~V} \pm 5 \% \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
Plastic DIP (P)	A	$\begin{aligned} & \text { 9312PC, 93L12PC } \\ & \text { 93S12PC } \end{aligned}$		9B
Ceramic DIP (D)	A	$\begin{aligned} & \text { 9312DC, 93L12DC } \\ & \text { 93S12DC } \end{aligned}$	$\begin{aligned} & \text { 9312DM, 93L12DM } \\ & \text { 93S12DM } \end{aligned}$	6B
Flatpak (F)	A	$\begin{aligned} & \text { 9312FC, 93L12FC } \\ & \text { 93S12FC } \end{aligned}$	$\begin{aligned} & \text { 9312FM, 93L12FM } \\ & \text { 93S12FM } \end{aligned}$	4L

9312
 93 L 12
 93 S 12
 8-INPUT MULTIPLEXER

DESCRIPTION - The '12 is a monolithic, high speed, 8-input digital multiplexer circuit. It provides, in one package, the ability to select one bit of data from up to eight sources. The '12 can be used as a universal function generator to generate any logic function of four variables. Both assertion and

- FULLY BUFFERED COMPLEMENTARY OUTPUTS

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

Vcc $=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93S (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs	1.0/1.0	1.25/1.25	0.5/0.25
E	Enable Input (Active LOW)	1.0/1.0	1.25/1.25	0.5/0.25
10-17	Multiplexer Inputs	1.0/1.0	1.25/1.25	0.5/0.25
Z	Multiplexer Output	20/10	25/12.5	$\begin{array}{r} 10 / 5.0 \\ \text { (3.0) } \end{array}$
$\overline{\mathbf{z}}$	Complementary Multiplexer Output	20/10	25/12.5	$\begin{array}{r} 10 / 5.0 \\ (3.0) \end{array}$

FUNCTIONAL DESCRIPTION - The '12 is a logical implementation of a single pole, eight position switch with the switch position controlled by the state of three Select inputs, S_{0}, S_{1}, S_{2}. Both assertion and negation outputs are provided. The Enable input (E) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs. The logic function provided at the output is:

$$
\begin{gathered}
Z=E \bullet\left(I_{0} \bullet \bar{S}_{0} \bullet \bar{S}_{1} \bullet \bar{S}_{2}+I_{1} \bullet S_{0} \bullet \bar{S}_{1} \bullet \bar{S}_{2}+I_{2} \bullet \bar{S}_{0} \bullet S_{1} \bullet \bar{S}_{2}+I_{3} \bullet S_{0} \bullet S_{1} \bullet \bar{S}_{2}+I_{4} \bullet \bar{S}_{0} \bullet \bar{S}_{1} \bullet S_{2}+I_{5}\right. \\
\left.\bullet S_{0} \bullet \bar{S}_{1} \bullet S_{2}+I_{6} \bullet \bar{S}_{0} \bullet S_{1} \bullet S_{2}+I_{7} \bullet S_{0} \bullet S_{1} \bullet S_{2}\right) .
\end{gathered}
$$

The ' 12 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '12 can provide any logic function of four variables and its negation. Thus any number of random logic elements used to generate unusual truth tables can be replaced by one ' 12.

TRUTH TABLE

INPUTS												OUTPUTS	
$\overline{\mathrm{E}}$	S2	S1	So	10	11	I_{2}	13	14	15	16	17	\bar{Z}	Z
H	X	X	X	X	X	X	X	X	X	X	X	H	L
L	L	L	L	L	X	X	x	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	x	X	X	x	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	x	X	X	X	H	L
L	L	H	H	x	X	x	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	x	x	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	x	x	x	X	H	X	X	L	H
L	H	H	L	X	X	X	X	x	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

[^0]
LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	93XX		935		93L		UNITS	CONDITIONS
		Min	Max	Min	Max	Min	Max		
Icc	Power Supply Current		44		62		13.3	mA	$\mathrm{Vcc}=\mathrm{Max}$

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	$\begin{array}{\|c\|} \hline 93 \mathrm{XX} \\ \hline \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{array}$		93 S $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\begin{array}{\|c\|} \hline 93 \mathrm{~L} \\ \hline C_{L}=15 \mathrm{pF} \\ \hline \end{array}$		UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$		Min	Max	Min	Max		
tpLh tphL	Propagation Delay S_{0} to Z		$\begin{aligned} & 34 \\ & 34 \end{aligned}$		$\begin{aligned} & 17 \\ & 18 \end{aligned}$		$\begin{aligned} & 60 \\ & 75 \end{aligned}$	ns	Figs. 3-1, 3-5
tple tPHL	Propagation Delay S_{0} to $\overline{\mathrm{Z}}$		$\begin{aligned} & 24 \\ & 26 \end{aligned}$		$\begin{aligned} & 16 \\ & 15 \end{aligned}$		45 65	ns	Figs. 3-1, 3-4
tPLH tPhL	Propagation Delay $\overline{\mathrm{E}}$ to Z		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 13 \\ & 16 \end{aligned}$		50 70	ns	Figs. 3-1, 3-4
tPLH tPHL	Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathbf{Z}}$		$\begin{aligned} & 20 \\ & 23 \end{aligned}$		$\begin{aligned} & 14 \\ & 11 \end{aligned}$		$\begin{aligned} & 35 \\ & 60 \end{aligned}$	ns	Figs. 3-1, 3-5
tplH tPHL	Propagation Delay In to Z		$\begin{aligned} & 24 \\ & 24 \end{aligned}$		$\begin{aligned} & 12 \\ & 12 \end{aligned}$		60	ns	Figs. 3-1, 3-5
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay In_{n} to $\overline{\mathrm{Z}}$		$\begin{array}{r} 14 \\ 16 \\ \hline \end{array}$		$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Figs. 3-1, 3-4

[^0]: H = HIGH Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial

