9334
 93L34
 8-BIT ADDRESSABLE LATCH

DESCRIPTION - The '34 is an 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level HIGH outputs. The device also incorporates an active LOW common clear for resetting all latches, as well as, an active LOW enable.

- SERIAL TO PARALLEL CAPABILITY
- EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE
- RANDOM (ADDRESSABLE) DATA ENTRY
- ACTIVE HIGH DEMULTIPLEXING OR DECODING CAPABILITY
- EASILY EXPANDABLE
- COMMON CONDITIONAL CLEAR

ORDERING CODE: See Section 9

PKGS	PIN OUT	COMMERCIAL GRADE	MILITARY GRADE	$\begin{aligned} & \text { PKG } \\ & \text { TYPE } \end{aligned}$
		$\begin{aligned} & V_{c c}=+5.0 \mathrm{~V} \pm 5 \%, \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} V_{c c} & =+5.0 \mathrm{~V} \pm 10 \%, \\ T_{A} & =-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	
Plastic DIP (P)	A	9334PC, 93L34PC		9B
Ceramic DIP (D)	A	9334DC, 93L34DC	9334DM, 93L34DM	6B
Flatpak (F)	A	9334FC, 93L34FC	9334FM, 93L34FM	4L

CONNECTION DIAGRAMS PINOUT A

LOGIC SYMBOL

$\mathrm{Vcc}=\operatorname{Pin} 16$ GND $=\operatorname{Pin} 8$

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
$A_{0}-A_{3}$	Address Inputs	$1.0 / 1.0$	$0.5 / 0.25$
\bar{D}	Data Input	$1.0 / 1.0$	$0.5 / 0.25$
\bar{E}	Enable Input (Active LOW)	$1.5 / 1.5$	$0.75 / 0.38$
$Q_{0}-Q_{7}$	Clear Input (Active LOW)	$1.0 / 1.0$	$0.5 / 0.25$
	Parallel Latch Outputs	$18 / 6.0$	$10 / 5.0$

FUNCTIONAL DESCRIPTION - The ' 34 has four modes of operation which are shown in the Mode Select Table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the Data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the Enable should be held HIGH while the Address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the state of the Dinput with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the ' 34 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

MODE SELECT TABLE

\bar{E}	$\overline{C L}$	MODE
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH 8-Channel Demultiplexer
H	L	Clear

TRUTH TABLE

INPUTS					OUTPUTS								MODE
$\overline{\text { CL }}$	$\overline{\mathbf{E}}$	A0	A_{1}	A_{2}	Qo	Q1	Q_{2}	Q3	Q 4	Q5	Q6	Q7	
L	H	X	X	X	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	D	L	L	L	L	L	L	L	Demultiplex
L	L	H	L	L	L	D	L	L	L	L	L	L	
L	L	L	H	L	L	L	D	L	L	L	L	L	
-	-	-	-	-	-	-	-	-	-	-	-	-	
i	L	H	H	H	$\stackrel{\square}{L}$	L	L	L	L	L	i	D	
H	H	X	X	X	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	Memory
H	L	L	L	L	D	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	$\mathrm{a}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	Q_{t-1}	Addressable
H	L	H	L	L	$\mathrm{Q}_{\mathrm{t}-1}$	D	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	$\mathrm{Q}_{\mathrm{t}-1}$	Q_{t-1}	Latch
H	L	L	H	L	Q_{t-1}	$\mathrm{Q}_{\text {t-1 }}$	D	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	
-	-	-	-	-	-						-		
$\stackrel{+}{H}$	L	H	$\stackrel{+}{H}$	$\stackrel{+}{H}$	\dot{Q}_{t-1}	$\dot{Q}_{\text {t-1 }}$	$\dot{\mathrm{Q}}_{t-1}$	\dot{Q}_{t-1}	$\dot{Q}_{\text {a }}$	$\stackrel{Q}{\text { a }}_{\text {t-1 }}$	$\dot{Q}_{\text {t-1 }}$	D	

$H=$ HIGH Voltage Level
L = LOW Voltage Level $\quad X=$ Immaterial
$Q_{t-1}=$ Previous Output State
LOGIC DIAGRAM

DC ChARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER		93XX		93L		UNITS	CONDITIONS
				Max	Min	Max		
Icc	Power Supply Current	XM		$\begin{aligned} & 86 \\ & 86 \end{aligned}$		21 26	mA	$\mathrm{Vcc}=\mathrm{Max}$

AC CHARACTERISTICS: $\mathrm{VCC}_{\mathrm{C}}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	93XX	93L	UNITS	CONDITIONS
		$C_{L}=15 \mathrm{pF}$	$C_{L}=15 \mathrm{pF}$		
		Min Max	Min Max		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay \bar{E} to Q_{n}	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 45 \\ & 42 \end{aligned}$	ns	Figs. 3-1, 3-9
$\overline{\mathrm{tPLH}}$ tPHL	Propagation Delay D to Q_{n}	$\begin{aligned} & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	ns	Figs. 3-1, 3-5
$\begin{aligned} & \text { tpLH } \\ & \text { tpht } \end{aligned}$	Propagation Delay A_{n} to Q_{n}	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 66 \\ & 66 \end{aligned}$	ns	Figs. 3-1, 3-20
tPHL	Propagation Delay $\overline{C L}$ to Q_{n}	40	55	ns	Figs. 3-1, 3-10

AC OPERATING REQUIREMENTS: $\mathrm{V}_{\mathrm{C}} \mathrm{C}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	93XX		93L		UNITS	CONDITIONS
		Min	Max	Min	Max		
$\mathrm{ts}_{\text {s }}(\mathrm{H})$	Setup Time HIGH, D to $\overline{\mathrm{E}}$	20		45		ns	Fig. 3-13
th (H)	Hold Time HIGH, D to $\overline{\mathrm{E}}$	0		-5.0		ns	
$t_{s}(L)$	Setup Time LOW, D to $\overline{\mathrm{E}}$	17		45		ns	
th (L)	Hold Time LOW, D to $\overline{\mathrm{E}}$	0		-7.0		ns	
$\begin{aligned} & \text { ts (H) } \\ & \text { ts (L) } \\ & \hline \end{aligned}$	Setup Time HIGH or LOW A_{n} to \bar{E}	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$		ns	Fig. 3-21
tw (L)	\bar{E} Pulse Width LOW	17		26		ns	
tw (L)	$\overline{C L}$ Pulse Width LOW			35		ns	Fig. 3-17

