

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW	93L (U.L.) HIGH/LOW
S	Data Select Input	$2.0 / 2.0$	$1.0 / 0.5$
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data Inputs	$1.0 / 1.0$	$0.5 / 0.25$
CP	Clock Pulse Input (Active HIGH)	$3.0 / 3.0$	$1.5 / 0.75$
	Common (Pin 9)	$1.5 / 1.5$	$0.75 / 0.375$
$\overline{M R}$	Separate (Pins 7 and 10)	$1.0 / 1.0$	$0.5 / 0.25$
Q $_{7}$	Master Reset Input (Active LOW)	$20 / 10$	$10 / 5.0$
\bar{Q}_{7}	Last Stage Output		(3.0)
	Complementary Output	$20 / 10$	$10 / 5.0$

FUNCTIONAL DESCRIPTION - The two 8 -bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7). The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the R and S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled so that new data can enter the, master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a 2-input multiplexer in front of the serial data input. The two data inputs D_{0} and D_{1} are controlled by the data select input (S) following the Boolean expression:

Serial data in: $\mathrm{SD}_{\mathrm{D}}=\mathrm{SD}_{0}+\mathrm{SD}_{1}$
An asynchronous master reset is provided which, when activated by a LOW logic level, will clear all 16 stages independently of any other input signal.

LOGIC SYMBOL

SYMBOL	PARAMETER	93XX	93L	UNITS	CONDITIONS
		Min Max	Min Max		
Icc	Power Supply Current	77	25.3	mA	$\mathrm{VCCC}^{\text {a }}$ Max

AC CHARACTERISTICS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (See Section 3 for waveforms and load configurations)

SYMBOL	PARAMETER	93X				UNITS	CONDITIONS
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		$C_{L}=15 \mathrm{pF}$			
		Min	Max	Min	Max		
${ }^{\text {max }}$	Maximum Shift Right Frequency	20		5.0		MHz	Figs. 3-1, 3-8
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PH} L} \end{aligned}$	Propagation Delay CP to Q_{7} or $\overline{\mathrm{Q}}_{7}$		$\begin{aligned} & 20 \\ & 35 \end{aligned}$		$\begin{aligned} & 45 \\ & 80 \end{aligned}$	ns	Figs. 3-1, 3-8
tPHL	Propagation Delay $\overline{M R}$ to Q7		50		110	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $\mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	93XX		93L		UNITS	CONDITIONS
		MIn	Max	Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$		ns	Fig. 3-6
$\begin{aligned} & \operatorname{th}(H) \\ & \operatorname{th}(\mathrm{L}) \end{aligned}$	Hold Time HIGH or LOW D_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		$\begin{aligned} & 55 \\ & 55 \end{aligned}$		ns	Fig. 3-8
$\mathrm{tw}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR }}$ Pulse Width with CP HIGH	30		60		ns	Fig. 3-16
$t_{w}(L)$	$\overline{\text { MR Pulse Width with CP LOW }}$	40		70		ns	
trec	Recovery Time $\overline{\text { MR }}$ to CP	33				ns	Fig. 3-16

