

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	93XX (U.L.) HIGH/LOW		
S0 , S1	Select Inputs	1.0/1.0		
CP0	First Stage Clock Pulse Input (Active Rising Edge)	1.0/1.0		
CP1	Three Stage Clock Pulse Input (Active Rising Edge)	1.0/1.0		
MS	Master Set Input (Active LOW)	1.0/1.0		
MR	Master Reset Input (Active LOW)	1.0/1.0		
Qo	First Stage Output	16/8.0		
\overline{Q}_0	Complementary First Stage Output	16/8.0		
$Q_1 - Q_3$	Three Stage Counter Outputs	16/8.0		
Q ₃	Complementary Last Stage Output	20/10		

FUNCTIONAL DESCRIPTION — The '05 consists of four master/slave flip-flops which are separated into two functional units — a single toggle stage and a three stage synchronous counter. All four flip-flips change state on the LOW-to-HIGH transition of the clock. The three stage counter can be programmed with external connections to provide moduli of either 5, 6, 7 or 8. This basic configuration allows synchronous binary counting by the last three stages and independent modulo 2 operation with the first single stage.

A four stage binary counter with a modulo of 10, 12, 14 or 16 is obtained by applying the incoming clock to the single toggle stage and feeding its negation output to the clock input of the three stage counter. A 4-stage divider with 50% duty cycle output is produced by feeding the incoming clock to the three stage counter and clocking the single stage with the \overline{Q}_3 output. In either the binary or 50% division mode the modulo (10, 12, 14, 16) is determined by the external programming connections for the three stage counter. These 4-stage counters or dividers are not fully synchronous (semisynchronous) but have only one flip-flop ripple delay in either configuration. Counter moduli other than 10, 12, 14, 16 can be formed with a few extra gates.

Several '05 variable modulus counters programmed in any modulo can be connected together without extra logic to form asynchronous (ripple) type multistage counters. This is done by connecting the \overline{Q}_3 output of the less significant counter to the clock input of the following counter.

The Master Set and Reset will asynchronously set or reset all four stages when activated. The active LOW Reset input when LOW will clear the counter, overriding the clock and forcing the outputs $Q_0 - Q_3$ LOW and outputs $\overline{Q}_0, \overline{Q}_3$ HIGH. The active LOW Set input when LOW will preset the counter, overriding the clock and forcing the outputs $Q_0 - Q_3$ HIGH and outputs $\overline{Q}_0, \overline{Q}_3$ LOW. The master set provides a synchronous clear, since the first clock pulse following the asynchronous master set will reset all stages. This action is independent of the molulo programmed.

LOGIC DIAGRAM

COUNTING MODE

The following are rules specifying the external connections required for various counter and divider modulos.

ASYNCHRONOUS MODE

INPUTS					OUTPUTS			
MS	MR	Qo	Q ₀	Q1	Q2	Q3	Q ₃	
L	H	H	L H	H	H	H	LH	
H.	Ĥ	co	UNT	• -	-	-	••	

*As determined by programming connections.

H = HIGH Voltage Level

L = LOW Voltage Level

PROGRAMMING CONNECTIONS FOR LAST THREE STAGES

S0 S1	MODULO
	5 6
NC Q1	6
Q ₂ NC	7
$Q_1 Q_2$	8
Q2 Q1	8

NC = Not Connected

CONNECTIONS FOR MODULO 10, 12, 14, 16 BINARY COUNTERS AND 50% DUTY CYCLE DIVIDERS

For Binary Counting Q₀ connected to CP₁ Incoming clock to CP₀

For 50% Duty Cycle Output Q₃ connected to CP₀ Incoming Clock to CP₁

FOR LAST THREE STAGES"					
MODULO	INPUTS		Ουτρυτ	AVAILABLE OUTPUT	
	S ₀	S1		FAN-OUT	
5	Q3	Q3	Q3	14/8.0	
6	Q1	Q1	Q1	14/7.0	
7	Q2	Q2	Q2	14/7.0	
8	Q1	Q2	Q2	15/7.0	
8	Q2	Q1	Q1	15/7.0	

ALTERNATE PROGRAMMING CONNECTIONS FOR LAST THREE STAGES**

**The alternate programming connections program the counter and conveniently terminate unused select inputs (NC). Since these inputs form the inputs to a single NAND gate (See logic diagram), their connection to the counter outputs for the various count modulos provides the indicated output drive.

SYMBOL	PARAMETER	93	3XX	LINITS	CONDITIONS	
		Min	Max			
lsc	Output Short Circuit Current	-20	-70	mA	V _{CC} = Max, V _{OUT} = 0 V	
lcc	Power Supply Current		66	mA	Vcc = Max	
AC CHAR	ACTERISTICS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} = +300 \text{ V}, \text{ T}_{A} = -1000 \text{ V}, \text{ T}_{A} = -10000 \text{ V}, \text{T}_{A} = -10000 \text{ V}, \text{T}_{A} =$	25°C (See ;	Section 3 fo	r waveforms	and load configurations)	
		93XX				
SYMBOL	PARAMETER	CL = 15 pF			CONDITIONS	
		Min	Max	1		
f _{max}	Maximum Count Frequency	23		MHz	Modulo 16 (So to Q1, St t	
tpLH tpHL	Propagation Delay CP ₀ to \overline{Q}_3 (Modulo 16 Connection)		38 48	ns	Q ₂ , Q ₀ to CP ₁ , Input to CP ₀ Figs. 3-1, 3-8	
tPLH tPHL	Propagation Delay CP ₀ to Q ₀		21 30	ns	Modulo-16 Figs. 3-1, 3-8	
tPLH tPHL	Propagation Delay CP1 to Q3 or Q3		23 30	ns	Modulo-8 Figs. 3-1, 3-8	
tPLH	Propagation Delay MS to Q ₁		26	ns	Modulo-8 Figs. 3-1, 3-16	
tPHL	Propagation Delay MR to Q ₁		35	ns	Modulo-8 Figs. 3-1, 3-16	
AC OPERA	ATING REQUIREMENTS: V _{CC} = +5.0	V, T _A = +2 9;	25° C 3XX		CONDITIONS	
		Min	Max			
tw	CP ₀ Pulse Width	22		ns	Fig. 3-8	
tw	MR or MS Pulse Width	24		ns	Fig. 3-16	
t _{rec}	Recovery Time MS to CP ₁	25		ns	Fig. 3-16	
	Recovery Time	30		ns	Fig. 3-16	