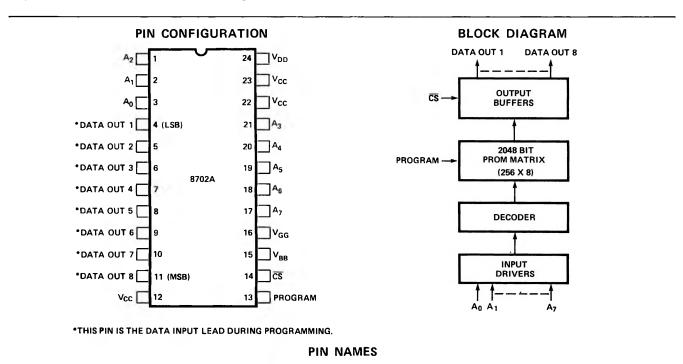


Silicon Gate MOS 8702A

2048 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

- Access Time 1.3 μsec Max.
- Fast Programming 2 Minutes for All 2048 Bits
- Fully Decoded, 256 x 8 Organization
- Static MOS No Clocks Required
- Inputs and Outputs TTL Compatible
- Three-State Output OR-Tie Capability
- Simple Memory Expansion Chip Select Input Lead


The 8702A is a 256 word by 8 bit electrically programmable ROM ideally suited for microcomputer system development where fast turn-around and pattern experimentation are important. The 8702A undergoes complete programming and functional testing on each bit position prior to shipment, thus insuring 100% programmability.

The 8702A is packaged in a 24 pin dual-in line package with a transparent quartz lid. The transparent quartz lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device. This procedure can be repeated as many times as required.

The circuitry of the 8702A is entirely static; no clocks are required.

A pin-for-pin metal mask programmed ROM, the Intel 8302, is ideal for large volume production runs of systems initially using the 8702A.

The 8702A is fabricated with silicon gate technology. This low threshold technology allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

ADDRESS INPUTS

DATA OUTPUTS

CHIP SELECT INPUT

A0-A7

DO1- DO2

PIN CONNECTIONS

The external lead connections to the 8702A differ, depending on whether the device is being programmed ⁽¹⁾ or used in read mode. (See following table.)

PIN	12 (V _{CC})	13 (Program)	14 (CS)	15 (V _{BB})	16 (V _{GG})	22 (V _{CC})	23 (V _{CC})
Read	V _{cc}	V _{CC}	GND	V _{cc}	V _{GG}	V _{cc}	V _{cc}
Programming	GND	Program Pulse	GND	V _{BB}	Pulsed V_{GG} (V_{IL4P})	GND	GND

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to +70°C
Storage Temperature
Soldering Temperature of Leads (10 sec) +300°C
Power Dissipation
Read Operation: Input Voltages and Supply
Voltages with respect to V _{CC} +0.5V to -20V
Program Operation: Input Voltages and Supply
Voltages with respect to V_{CC}

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. AND OPERATING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to 70°C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = -9V \pm 5\%$, $V_{GG}^{(2)} = -9V \pm 5\%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP.(³⁾ MAX.	UNIT	CONDITIONS
I _{L1}	Address and Chip Select Input Load Current			10	μA	$V_{IN} = 0.0V$
ILO	Output Leakage Current			10	μA	$V_{OUT} = 0.0V, \overline{CS} = V_{CC} - 2$
IDDO	Power Supply Current		5	10	mA	$V_{GG} = V_{CC}, \overline{CS} = V_{CC} - 2$ $I_{OL} = 0.0 \text{mA}, T_A = 25^{\circ}\text{C}$
IDD1	Power Supply Current		35	50	mA	$\overline{CS} = V_{CC} - 2$ $I_{OL} = 0.0 \text{mA}$, $T_A = 25^{\circ}\text{C}$
I _{DD2}	Power Supply Current		32	46	mA	CS=0.0 I _{OL} =0.0mA , T _A = 25°C
I _{DD3}	Power Supply Current		38.5	60	mA	$\overline{CS} = V_{CC} - 2$ $I_{OL} = 0.0 \text{mA}, T_A = 0^{\circ}C$ Continuo Operation
I _{CF1}	Output Clamp Current		8	14	mA	$V_{OUT} = -1.0V, T_{A} = 0^{\circ}C$
I _{CF2}	Output Clamp Current			13	mA	$V_{OUT} = -1.0V, T_A = 25^{\circ}C$
I _{GG}	Gate Supply Current			10	μA	
V _{IL1}	Input Low Voltage for TTL Interface	-1.0		0.65	v	
V _{IL2}	Input Low Voltage for MOS Interface	V _{DD}		V _{CC} –6	V	
V _{IH}	Address and Chip Select Input High Voltage	V _{cc} -2		V _{CC} +0.3	V	
lol	Output Sink Current	1.6	4		mA	V _{OUT} = 0.45V
VOL	Output Low Voltage		7	0.45	V	I _{OL} = 1.6mA
V _{OH}	Output High Voltage	3.5			V	I _{OH} = -200 μA

Note 1: In the programming mode, the data inputs 1-8 are pins 4-11 respectively. $\overline{CS} = GND$.

Note 2: VGG may be clocked to reduce power dissipation. In this mode average IDD increases in proportion to VGG duty cycle. (See p. 5)

Note 3: Typical values are at nominal voltages and $T_A = 25^{\circ}$ C.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}$ C to +70° C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = -9V \pm 5\%$, $V_{GG} = -9V \pm 5\%$ unless otherwise noted

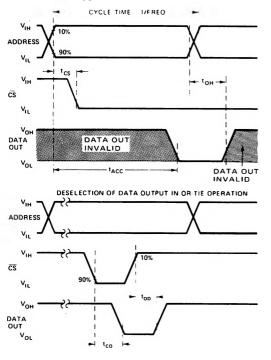
SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t _{OH}	Previous read data valid			100	ns
tACC	Address to output delay			1.3	μs
t _{DVGG}	Clocked V _{GG} set up [2]	1.0			μs
t _{CS}	Chip select delay			400	ns
t _{co}	Output delay from CS			900	ns
t _{CS} t _{CO} t _{OD}	Output deselect			400	ns
t _{онс}	Data out hold in clocked V _{GG} mode (Note 1)		-	5	μs

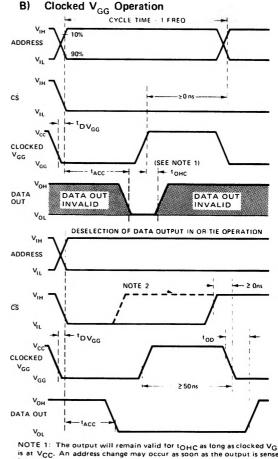
Note 1. The output will remain valid for tOHC as long as clocked VGG is at VCC. An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked V_{GG} is returned to V_{GG}.

2. For this option please specify 8702AL

CAPACITANCE* $T_{\Delta} = 25^{\circ}C$

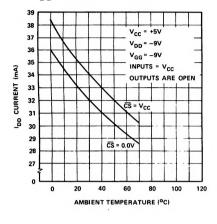
SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS
CIN	Input Capacitance		8	15	pF	$\frac{V_{IN} = V_{CC}}{\overline{CS} = V_{CC}}$ All unused pins
COUT	Output Capacitance		10	15	pF	
CVGG	V _{GG} Capacitance (Clocked V _{GG} Mode)			30	pF	$V_{OUT} = V_{CC}$ are at A.C. $V_{GG} = V_{CC}$ ground


* This parameter is periodically sampled and is not 100% tested.

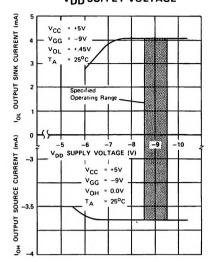

SWITCHING CHARACTERISTICS

Conditions of Test:

Input pulse amplitudes: 0 to 4V; $t_{\rm R}$, $t_{\rm F}~{\leq}50~{\rm ns}^{-1}$ Output load is 1 TTL gate; measurements made at output of TTL gate ($t_{PD} \leq 15$ ns)

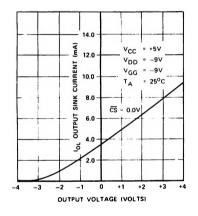


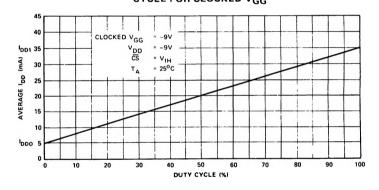
NOTE 1: The output will remain valid for t_{OHC} as long as clocked V_{GG} is at V_{CC} . An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked V_{GG} is returned to V_{GG} .

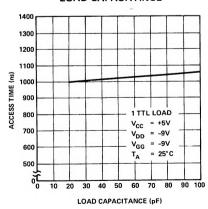

NOTE 2: If CS makes a transition from V_{IL} to V_{IH} while clocked V_{GG} is at V_{GG}, then deselection of output occurs at t_{OD} as shown in static operation with constant V_{GG}.

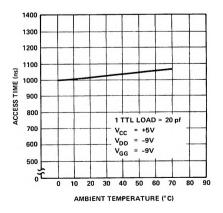
TYPICAL CHARACTERISTICS

IDD CURRENT VS. TEMPERATURE


OUTPUT CURRENT VS. VDD SUPPLY VOLTAGE


OUTPUT CURRENT VS. TEMPERATURE


OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE


AVERAGE CURRENT VS. DUTY CYCLE FOR CLOCKED V_{GG}

ACCESS TIME VS. LOAD CAPACITANCE

ACCESS TIME VS. TEMPERATURE

PROGRAMMING OPERATION

D.C. AND OPERATING CHARACTERISTICS FOR PROGRAMMING OPERATION

 $T_A = 25^{\circ}C$, $V_{CC} = 0V$, $V_{BB} = +12V \pm 10\%$, $\overline{CS} = 0V$ unless otherwise noted

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
I _{LI1P}	Address and Data Input Load Current			10	mA	V _{IN} = -48V
I _{L12P}	Program and V _{GG} Load Current			10	mA	V _{IN} = -48V
I _{B B}	V _{BB} Supply Load Current		.05		mA	
I _{DDP} ⁽¹⁾	Peak I _{DD} Supply Load Current		200		mA	$V_{DD} = V_{prog} = -48V$ $V_{GG} = -35V$
	Input High Voltage			0.3	V	
VILIP	Pulsed Data Input Low Voltage	-46		-48	V	
V _{IL2P}	Address Input Low Voltage	-40		-48	V	
VIL3P	Pulsed Input Low V _{DD} and Program Voltage	-46		-48	V	
V _{IL4P}	Pulsed Input Low V _{GG} Voltage	-35		-40	V	

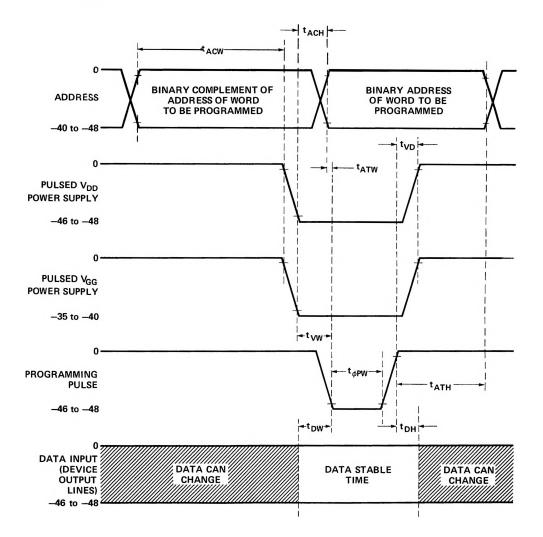
Note 1: IDDP flows only during VDD, VGG on time. IDDP should not be allowed to exceed 300 mA for greater than 100 µsec. Average power supply current IDDP is typically 40 mA at 20% duty cycle.

A.C. CHARACTERISTICS FOR PROGRAMMING OPERATION

 $T_{AMBIENT}$ = 25°C, V_{CC} = 0V, V_{BB} = + 12V ± 10%, \overline{CS} = 0V unless otherwise noted

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
	Duty Cycle (V_{DD} , V_{GG})			20	%	
t _{¢PW}	Program Pulse Width			3	ms	V _{GG} = -35V, V _{DD} = V _{prog} = -48V
t _{DW}	Data Set Up Time	25			μs	
t _{DH}	Data Hold Time	10			μs	
t _{VW}	V _{DD} , V _{GG} Set Up	100			μs	
t _{VD}	V _{DD} , V _{GG} Hold	10		100	μs	
t _{ACW} ⁽²⁾	Address Complement Set Up	25			μs	·····
t _{ACH} ⁽²⁾	Address Complement Hold	25			μs	
^t ATW	Address True Set Up	10			μs	· · · · · · · · · · · · · · · · · · ·
tATH	Address True Hold	10			μs	

Note 2. All 8 address bits must be in the complement state when pulsed V_{DD} and V_{GG} move to their negative levels. The addresses (0 through 255) must be programmed as shown in the timing diagram for a minimum of 32 times.


SWITCHING CHARACTERISTICS FOR PROGRAMMING OPERATION

PROGRAM OPERATION

Conditions of Test:

Input pulse rise and fall times $\leq 1\mu$ sec $\overline{CS} = 0V$

PROGRAM WAVEFORMS

PROGRAMMING OPERATION OF THE 8702A

			ADDRESS							
When the Data Input for the Program Mode is:	Then the Data Output during the Read Mode is:	WORD	A7	A6	A5	A4	A3	A2	A1	A ₀
		0	0	0	0	0	0	0	0	0
VILIP = ~-48V pulsed	Logic 1 = V _{OH} = 'P' on tape	1	0	0	0	0	0	0	0	1
VILIP = -46V pulsed			ł	1		1	1	1	1	I
V _{IHP} = ~ 0V		1	1	1		1	1	1	1	1
	Logic 0 = V _{OL} = 'N' on tape	255	1	1	1	1	1	1	1	1

Address Logic Level During Read Mode: Address Logic Level During Program Mode :

 $Logic 0 = V_{1L} (\sim .3V) \qquad Logic 1 = V_{1H} (\sim 3V) \\ Logic 0 = V_{1L2P} (\sim -40V) \qquad Logic 1 = V_{1HP} (\sim 0V)$

PROGRAMMING INSTRUCTIONS FOR THE 8702A

I. Operation of the 8702A in Program Mode

Initially, all 2048 bits of the ROM are in the "0" state (output low). Information is introduced by selectively programming "1"s (output high) in the proper bit locations.

Word address selection is done by the same decoding circuitry used in the READ mode (see table on page 6 for logic levels). All 8 address bits must be in the binary complement state when pulsed V_{DD} and V_{GG} move to their negative levels. The addresses must be held in their binary complement state for a minimum of 25 μ sec after V_{DD} and V_{GG} have moved to their negative levels. The addresses must then make the transition to their true state a minimum of 10 µsec before the program pulse is applied. The addresses should be programmed in the sequence 0 through 255 for a minimum of 32 times. The eight output terminals are used as data inputs to determine the information pattern in the eight bits of each word. A low data input level (-48V) will program a "1" and a high data input level (ground) will leave a "0" (see table on page 6). All eight bits of one word are programmed simultaneously by setting the desired bit information patterns on the data input terminals.

During the programming, V_{GG} , V_{DD} and the Program Pulse are pulsed signals.

II. Programming of the 8702A Using Intel[®] Microcomputers

Intel provides low cost program development systems which may be used to program its electrically programmable ROMs. Note that the programming specifications that apply to the 8702A are identical to those for Intel's 1702A.

A. Intellec®

The Intellec series of program development systems, the Intellec 8/Mod 8 and Intellec 8/Mod 80, are used as program development tools for the 8008 and 8080 microprocessors respectively. As such, they are equipped with a PROM programmer card and may be used to program Intel's electrically programmable and ultraviolet erasable ROMs.

An ASR-33 teletype terminal is used as the input device. Through use of the Intellec software system monitor, programs to be loaded into PROM may be typed in directly or loaded through the paper tape reader. The system monitor allows the program to be reviewed or altered at will prior to actually programming the PROM. For more complete information on these program development systems, refer to the Intel Microcomputer Catalog or the Intellec Specifications.

B. Users of the SIM8 microcomputer programming systems may also program the 8702A using the MP7-03 programmer card and the appropriate control ROMs: SIM8 system—Control ROMs A0860, A0861 and A0863.

III. 8702A Erasing Procedure

The 8702A may be erased by exposure to high intensity short-wave ultraviolet light at a wavelength of 2537A. The recommended integrated dose (i.e., UV intensity x exposure time) is 6W-sec/cm². Examples of ultraviolet sources which can erase the 8702A in 10 to 20 minutes are the Model UVS-54 and Model S-52 short-wave ultraviolet lamps manufactured by Ultra-Violet Products, Inc. (5114 Walnut Grove Avenue, San Gabriel, California). The lamps should be used without short-wave filters, and the 8702A to be erased should be placed about one inch away from the lamp tubes.