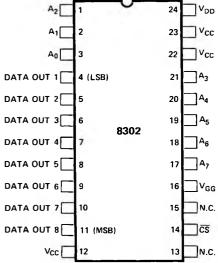
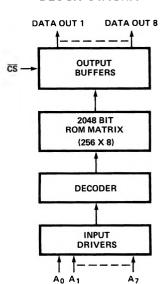
Silicon Gate MOS 8302

2048 BIT MASK PROGRAMMABLE READ ONLY MEMORY

- Access Time —1 μsec Max.
- Fully Decoded, 256 x 8 Organization
- Inputs and Outputs TTL Compatible
- Three-State Output OR-Tie Capability


- Static MOS No Clocks Required
- Simple Memory Expansion Chip Select Input Lead
- 24-Pin Dual-In-Line Hermetically Sealed Ceramic Package

The Intel 8302 is a fully decoded 256 word by 8 bit metal mask ROM. It is ideal for large volume production runs of microcomputer systems initially using the 8702A erasable and electrically programmable ROM. The 8302 has the same pinning as the 8702A.


The 8302 is entirely static - no clocks are required. Inputs and outputs of the 8302 are TTL compatible. The output is three-state for OR-tie capability. A separate chip select input allows easy memory expansion. The 8302 is packaged in a 24 pin dual-in-line hermetically sealed ceramic package.

The 8302 is fabricated with p-channel silicon gate technology. This low threshold allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies.

PIN CONFIGURATION

BLOCK DIAGRAM

PIN NAMES

A ₀ . A ₇	ADDRESS INPUTS				
CS	CHIP SELECT INPUT				
DO ₁ DO ₈	DATA OUTPUTS				

Absolute Maximum Ratings*

Ambient Temperature Under Bias	. 0°C to +70°C
Storage Temperature	-65°C to +125°C
Soldering Temperature of Leads (10 sec)	+300°C
Power Dissipation	2 Watts
Input Voltages and Supply	
Voltages with respect to V _{CC}	.+0.5V to -20V

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

READ OPERATION

D.C. and Operating Characteristics

 $T_A = 0^{\circ}\text{C}$ to 70°C , $V_{CC} = +5\text{V} \pm 5\%$, $V_{DD} = -9\text{V} \pm 5\%$, $V_{GG}^{(1)} = -9\text{V} \pm 5\%$, unless otherwise noted.

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS		
Li	Address and Chip Select Input Load Current			1	μА	V _{IN} = 0.0V		
I _{LO}	Output Leakage Current			1	μA	$V_{OUT} = 0.0V, \overline{CS} = V_{CC} - 2$		
I _{DDO}	Power Supply Current		5	10	mA	V _{GG} =V _{CC} , CS=V _{CC} -2 I _{OL} = 0.0mA, T _A = 25°C		
I _{DD1}	Power Supply Current		35	50	mA	CS=V _{CC} -2 I _{OL} =0.0mA, T _A = 25°C		
I _{DD2}	Power Supply Current		32	46	mA	CS=0.0 I _{OL} =0.0mA, T _A = 25°C	Continuous Operation	
l _{DD3}	Power Supply Current		38.5	60	mA	$\overline{\text{CS}} = \text{V}_{\text{CC}} - 2$ $\text{I}_{\text{OL}} = 0.0 \text{mA} , \text{T}_{\text{A}} = 0 \text{°C}$		
I _{CF1}	Output Clamp Current		8	14	mA	$V_{OUT} = -1.0V, T_A = 0^{\circ}C$		
I _{CF2}	Output Clamp Current			13	mA	$V_{OUT} = -1.0V, T_A = 25^{\circ}C$		
l _{GG}	Gate Supply Current			1	μА			
V _{IL1}	Input Low Voltage for TTL Interface	-1.0		0.65	V			
V _{IL2}	Input Low Voltage for MOS Interface	V _{DD}		V _{CC} -6	V			
V _{IH}	Address and Chip Select Input High Voltage	V _{CC} -2		V _{CC} +0.3	V			
loL	Output Sink Current	1.6	4		mA	V _{OUT} = 0.45V		
Юн	Output Source Current	-2.0			mA	V _{OUT} = 0.0V		
v _{ol}	Output Low Voltage		7	0.45	V	I _{OL} = 1.6mA		
V _{OH}	Output High Voltage	3.5	4.5		V	I _{OH} = -100 μA		

Note 1. V_{GG} may be clocked to reduce power dissipation. In this mode average I_{DD} increases in proportion to V_{GG} duty cycle. Note 2. Typical values are at nominal voltages and $T_A = 25^{\circ}C$.

A.C. Characteristics

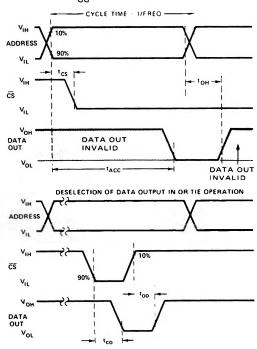
 $T_A = 0^{\circ} C$ to +70°C, $V_{CC} = +5V \pm 5\%$, $V_{DD} = -9V \pm 5\%$, $V_{GG} = -9V \pm 5\%$ unless otherwise noted

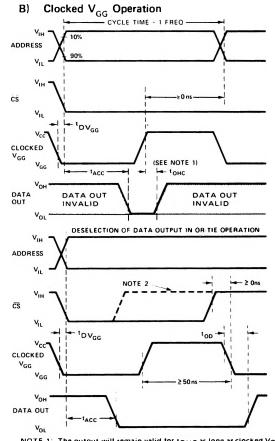
SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT
Freq.	Repetition Rate			1	MHz
t _{OH}	Previous read data valid			100	ns
tACC	Address to output delay		.700	1	μs
t _{DVGG}	Clocked V _{GG} set up	1			μs
t _{CS}	Chip select delay			200	ns
t _{CO}	Output delay from CS			500	ns
t _{OD}	Output deselect			300	ns
tonc	Data out hold in clocked V _{GG} mode (Note 1)			5	μs

Note 1. The output will remain valid for toHC as long as clocked VGG is at VCC. An address change may occur as soon as the output is sensed (clocked VGG may still be at VCC). Data becomes invalid for the old address when clocked VGG is returned to VGG.

Capacitance* T_A = 25°C

SYMBOL	TEST	MINIMUM	TYPICAL	MAXIMUM	UNIT	CONDITIONS
CIN	Input Capacitance		5	10	pF	$\frac{V_{IN}}{CS} = V_{CC}$ All unused pins
C _{OUT}	Output Capacitance		5	10	pF	
C _{VGG}	V _{GG} Capacitance (Clocked V _{GG} Mode)			30	pF	$V_{OUT} = V_{CC}$ are at A.C. $V_{GG} = V_{CC}$ ground

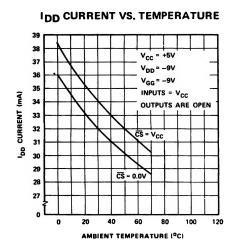

^{*}This parameter is periodically sampled and is not 100% tested.

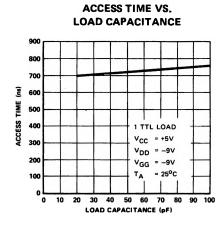

Switching Characteristics

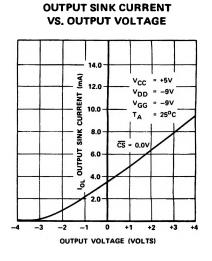
Conditions of Test:

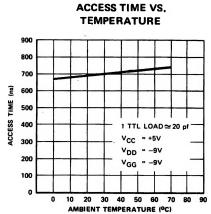
Input pulse amplitudes: 0 to 4V; t_R , $t_F \le 50$ ns Output load is 1 TTL gate; measurements made at output of TTL gate ($t_{PD} \le 15$ ns)

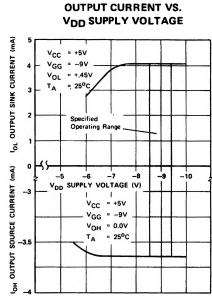
A) Constant V_{GG} Operation






NOTE 1: The output will remain valid for t_{OHC} as long as clocked V_{GG} is at V_{CC} . An address change may occur as soon as the output is sensed (clocked V_{GG} may still be at V_{CC}). Data becomes invalid for the old address when clocked V_{GG} is returned to V_{GG} .


NOTE 2: If $\overline{\text{CS}}$ makes a transition from V_{LL} to V_{IH} while clocked V_{GG} is at V_{GG} , then deselection of output occurs at t_{OD} as shown in static operation with constant V_{GG} .


Typical Characteristics

