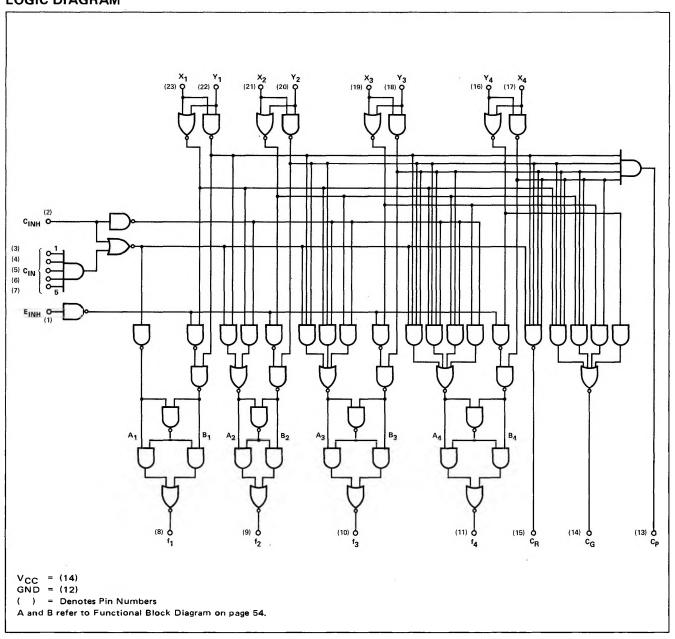
DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8260 Arithmetic Logic Element is a monolithic gate array incorporating four full-adders structured in a look-ahead mode. The device may be used as four mutually independent exclusive NOR or AND gates by proper addressing of the inhibit lines.


As a four-bit adder, the 8260 permits high speed parallel addition of four sets of data and features both simultaneous addition on a character to character and on a bit to bit basis

within the package.

When true input variables are used, the true sum is formed at the f output. Inverted input variables produce the complement of the sum of the true variables.

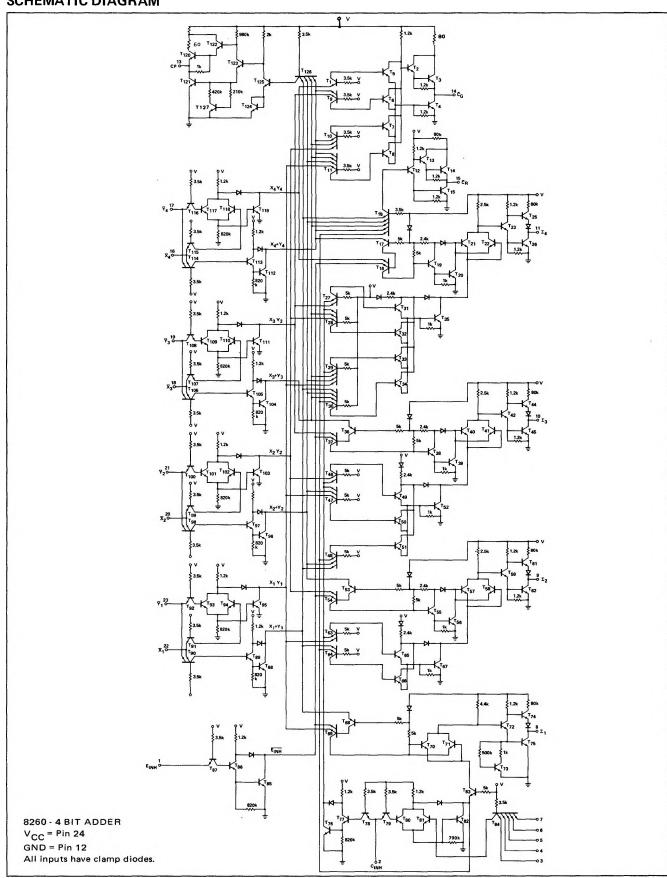
The carry-outs available are: Internally Generated (C_G); Propagated (C_p); and Ripple (C_R). This gives the 8260 complete flexibility when used in Ripple Carry or Anticipated Carry Adder Systems.

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

CHARACTERISTICS		Ĺ	IMITS		TEST CONDITIONS INPUT TERMINALS					TE	NOTES			
	MIN.	TYP.	MAX.	UNITS	x _n	Yn	CIN	CINH	EINH	Cp	C _G	CR	fn	
"1" Output Voltage	2.6	3.5		٧	2.0	2.0	2.0	2.0	2.0		-0.8	-0.8	-0.8	1
"0" Output Voltage														
f _n , C _G and C _R			0.4	٧	0.8	0.8	0.8	0.8	0.8		9.6	9.6	9.6	2
"0" Input Current				•				Ì						
X _n and C _{INH}	-0.1		-3.2	mA	0.4	5.25	}	0.4						
Yn	-0.1		-3.2	mA	5.25	0.4								
E _{INH} & C _{IN1} , through C _{IN5}	-0.1		-1.6	mA			0.4		0.4					3
"1" Input Current														
X _n and C _{INH}			80	μΑ	4.5	ov		4.5						
Yn			80	μΑ	ov	4.5								
E_{INH} & C_{IN1} , through C_{IN5}			40	μΑ	,		4.5		4.5					4
Input Latch Voltage														
X _n and C _{INH}	5.5			V	10mA	ov		10mA						
Yn	5.5			٧	0∨	10mA								
E _{INH} & C _{IN1} , through C _{IN5}	5.5			V			10mA	1	10mA					4
Power/Current Consumption			400/ 76.2	600/ 114.1	mW/ mA									15

$T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

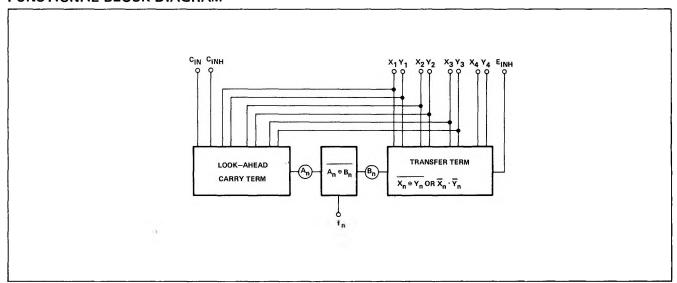

CHARACTERISTICS		L	IMITS		TEST CONDITIONS INPUT TERMINALS					OUTPUT TERMINALS (mA)				NOTES
	MIN.	TYP.	MAX.	UNITS	x _n	Yn	CIN	CINH	EINH	С ^р	C _G	CR	fn	
Propagation Delay											1			}
X_n , Y_n and C_{IN} to C_R		14	20	ns	!						1			14
X_n and Y_n to Cp and C_G	-	14	20	ns				1						14
X_n and Y_n to f_n		24	33	ns										14
C _{IN} to f _n		14	22	ns	1						ļ		}	14
Output Short Circuit Current						ļ					}			j
$f_{\sf n}$, ${\sf C}_{\sf G}$ and ${\sf C}_{\sf R}$	-20		-70	mA	5.0	5.0	5.0	5.0	5.0		ov	0∨	0∨	13
Ср	-40		-90	mA	٥٧					0٧				

NOTES:

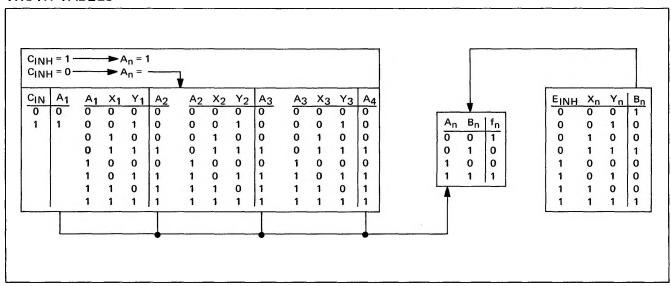
- Output source current is supplied through a resistor to around.
- Output sink current is supplied through a resistor to V_{CC} . When testing for separate C_{1N} inputs, tie the remaining
- c_{1N} inputs to $v_{CC}.$ When testing for separate c_{1N} inputs, tie the remaining C_{IN} inputs to ground.
- Keep unused inputs tied to V_{CC} unless otherwise specified. All voltage and capacitance measurements are referenced to 6. the ground terminal.
- All measurements are taken with ground pin tied to $^{\prime\prime}0^{\prime\prime}$ volts. 7.
- Positive current flow is defined as into the terminal referenced.

- 9. Positive logic definition:
 - "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- Manufacturer reserves the right to make design and process changes and improvements.
- 12. Input latch voltage test guarantees operation free of input latch-up over the specified operating power supply voltage range.
- 13. Ground one output at a time.
- 14. Measure switching times at 1.5 volt level.
- $V_{CC} = 5.25V.$ 15.

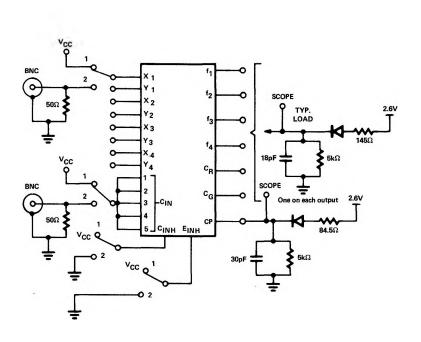
SCHEMATIC DIAGRAM

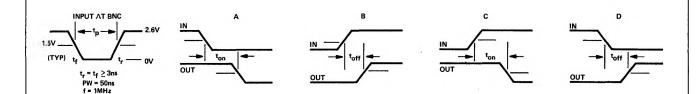


MODE OF OPERATION


	Least Significant	CONT	ROLS		
INPUTS	CIN Inputs to be *	CINH	EINH	1	
X _n , Y _n	0	0	0	Σ_{n}	Add
	0	0	1		Not Used
	0	1	0	$X_nY_n + \overline{X}_n\overline{Y}_n$	Coincidence
	0	1	1	X_nY_n	AND
$\overline{X}_{n'}$ \overline{Y}_{n}	1	0	0	$\overline{\Sigma}_n$	Add
1	1	0	1		Not Used
	1	1	0	$\overline{X}_{n}\overline{Y}_{n}$ + $X_{n}Y_{n}$	Coincidence
	1	1	1	$\overline{X}_n\overline{Y}_n$	AND

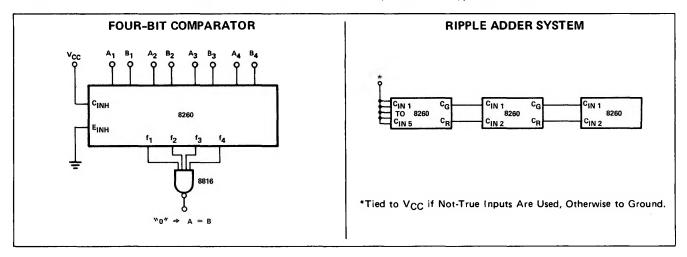
^{*}Least significant of a "Multiple Package" adder system.


FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLES

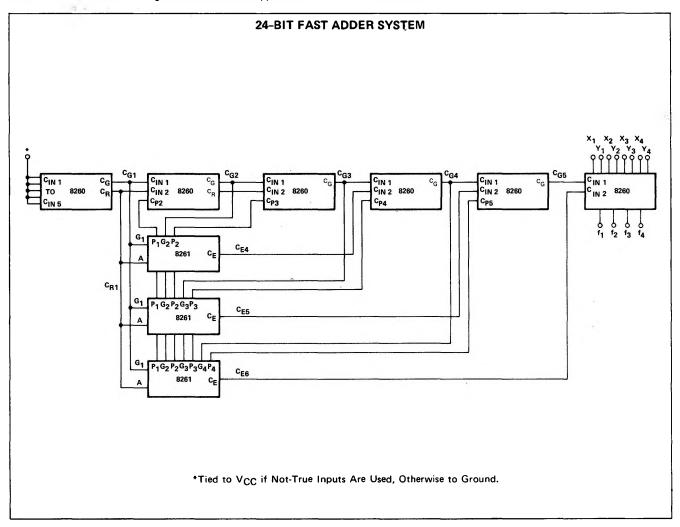
AC TEST FIGURE AND WAVEFORMS

NOTE: Scope terminals to be ≤ ½" from Package Pins.


STEP DELAY NO. FROM-TO		SWITCH POSITION												
	DRIVEN			WAVEFORM TYPE										
		INPUTS	X ₁	Υ ₁	x ₂	Y2	х ₃	Y ₃	X ₄	Y ₄	CIN	EINH	CINH	
1	X _n to C _R	2	2	1	2	1	2	1	2	1	2	2	2	A, B
	X _n to Cp								L					C, D
2	Yn to CR	2	Ι,	2	,	2		2	,	2	2	2	2	А, В
•	Yn to Cp	_	١.	-	•	_	•		l '		1	1		C, D
3	X _n ,Y _n to f _n	2	1	1	1	1	1	1	1	1	1	1	1	A, B
4	CIN to CR	2	2	2	2	2	2	2	2	2	2	2	2	A, B
5	C _{IN} to f _n	2	1	2	1	2	1	2	1	2	2	2	2	C, D

TYPICAL APPLICATIONS

The 8260 contains the control logic necessary to allow operation as a general purpose arithmetic logic device. Below, the internal carries are inhibited to effect Exclusive-NOR or coincidence operation. The 8260 may also be operated as four independent


AND gates to implement masking and similar requirements of micro-programming.

The Ripple Adder System is the simplest but also the slowest application of the 8260. The typical total addition time (input to sum output for 12-bit ripple adder is 42ns.).

The Fast Adder System provides complete carry look-ahead addition for words to 24 bits in length and is the fastest application of

the 8260 units. The typical total addition time for a 24 bit fast adder is 42ns.

