8260

N.F.Q PACKAGES

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8260 Arithmetic Logic Element is a monolithic gate array incorporating four full-adders structured in a lookahead mode. The device may be used as four mutually independent exclusive NOR or AND gates by proper addressing of the inhibit lines.

As a four-bit adder, the 8260 permits high speed parallel addition of four sets of data and features both simultaneous addition on a character to character and on a bit to bit basis

within the package.

When true input variables are used, the true sum is formed at the f output. Inverted input variables produce the complement of the sum of the true variables.

The carry-outs available are: Internally Generated (C_G); Propagated (C_p); and Ripple (C_R). This gives the 8260 complete flexibility when used in Ripple Carry or Anticipated Carry Adder Systems.

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

			IMITS			TEST	CONDI	TIONS			OUT			
CHARACTERISTICS						INPUT	TERM	INALS		TERMINALS				NOTES
	MIN.	TYP.	MAX.	UNITS	X _n	Yn	CIN	CINH	EINH	Ср	CG	CR	f _n	
"1" Output Voltage	2.6	3.5		V	2.0	2.0	2.0	2.0	2.0		-800	-800 Aپر	-800 µA	1
"O" Output Voltage]	,						ļ	μА	μΑ.	"~	
f _n , C _G and C _R			0.4	V	0.8	0.8	0.8	0.8	0.8		9.6	9.6 mA	9.6 mA	2 2
"O" Input Current			0.4	V	2.0	≥2.0	2.0	2.0	2.0	16 mA	mA	mA	mA	4
X_n and $C_{\mbox{\footnotesize{INH}}}$	-0.1		-3.2	mA	0.4	5.25		0.4		!	l			
Yn	-0.1		-3.2	mA	5.25	0.4	l		i					
E _{INH} & C _{IN1} , through C _{IN5}	-0.1		-1.6	mA		į	0.4		0.4					3
"1" Input Current									ļ	!				
X_n and C_{INH}			80	μΑ	4.5	0∨		4.5		1			ļ	
Yn			80	μА	ov	4.5			ļ	1			,	
E _{INH} & C _{IN1} , through C _{IN5}		ĺ	40	μΑ			4.5		4.5					4
Input Voltage Rating		1					l			l			ļ	
X _n and C _{INH}	5.5			v	10mA	0V		10mA		l	ļ			
Yn	5.5			v	0V	10mA				1	l			
E _{INH} & C _{IN1} , through C _{IN5}	5.5			v			10mA		10mA					4
Power/Current Consumption			400/ 76.2	600/ 114.1	mW/ mA									11

$T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

	LIMITS				TEST CONDITIONS						OUTPUT			
CHARACTERISTICS		-	IMIT IS		INPUT TERMINALS						TERMINALS			
	MIN.	TYP.	MAX.	UNITS	x _n	Yn	CIN	CINH	EINH	Сp	CG	CR	fn	
Propagation Delay							ŀ							
X_n , Y_n and C_{1N} to C_R		14	20	ns			1							12
X_n and Y_n to Cp and C_G		14	20	ns										12
X_n and Y_n to f_n		24	33	ns									}	12
C _{IN} to f _n		14	22	ns					1				}	12
Output Short Circuit Current							ł		,	1	}			
f_n , C_G and C_R	-20		-70	mA	5.0	5.0	5.0	5.0	5.0		ov	ov	οv	10, 11
Ср	-30		-90	mA	ov					0V	1			10, 11

NOTES:

- Output source current is supplied through a resistor to
- Output sink current is supplied through a resistor to V_{CC}.
- When testing for separate C_{IN} inputs, tie the remaining
- C_{IN} Inputs to V_{CC}.
 When testing for separate C_{IN} inputs, tie the remaining CIN inputs to ground.
- 5. Keep unused inputs tied to V_{CC} unless otherwise specified. All voltage measurements are referenced to
- the ground terminal.
- 7. Positive current flow is defined as into the terminal referenced.

- 8. Positive logic definition:
 - "UP" Level = "1", "DOWN" Level = "0".
- 9. Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- 10. Not more than one output should be shorted at a time.
- 11.
- V_{CC} = 5.25V. Refer to AC test figure and waveforms. 12.

SCHEMATIC DIAGRAM

MODE OF OPERATION

	Least Significant	CONT	ROLS		
INPUTS	CIN Inputs to be *	CINH EINH		,	
Xn' Yn	0	0	0	Σ_{n}	Add
}	0	0	1		Not Used
	0	1	0	$X_nY_n + \overline{X}_n\overline{Y}_n$	Coincidence
+	0	1	1	X_nY_n	AND
$\overline{X}_{n'} \overline{Y}_{n}$	1	0	0	$\overline{\Sigma}_{0}$	Add
- 1	1	0	1		Not Used
-	1	1	0	X _n ∇ _n +X _n Y _n	Coincidence
	1	1	1	$\overline{X}_n \overline{Y}_n$	AND

^{*}Least significant of a "Multiple Package" adder system.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLES

AC TEST FIGURE AND WAVEFORMS

NOTE: Scope terminals to be ≤ ½" from Package Pins.

STEP NO.	1	SWITCH POSITION												
	DELAY FROM-TO	DRIVEN	_				OTH	IER IN	IPUTS					WAVEFORM TYPE
		INPUTS	×,	Υ1	×2	Y2	X ₃	Y ₃	X ₄	٧4	CIN	EINH	CINH	
1	X _n to C _R or X _n to C _P	2	2	1	2	1	2	1	2	1	2	2	2	A, B C, D
2	Yn to CR or Yn to Cp	2	1	2	1	2	1	2	1	2	2	2	2	A, B C, D
3	X _n ,Y _n to f _n	2	1	1	1	1	1	1	1	1	1	1	1	A, B
4	CIN to CR	2	2	2	2	2	2	2	2	2	2	2	2	A, B
5	CIN to fn	2	1	2	1	2	1	2	1	2	2	2	2	C, D

TYPICAL APPLICATIONS

The 8260 contains the control logic necessary to allow operation as a general purpose arithmetic logic device. Below, the internal carries are inhibited to effect Exclusive-NOR or coincidence operation. The 8260 may also be operated as four Independent

AND gates to implement masking and similar requirements of micro-programming.

The Ripple Adder System is the simplest but also the slowest application of the 8260. The typical total addition time (input to sum output for 12-bit ripple adder is 42ns).

The Fast Adder System provides complete carry look-ahead addition for words to 24 bits in length and is the fastest application of

the 8260 units. The typical total addition time for a 24 bit fast adder is 42ns.

