8-INPUT DIGITAL MULTIPLEXER

8230 8231 8232

DIGITAL 8000 SERIES TTL/MSI

DESCRIPTION

The 8-Input Digital Multiplexer is the logical equivalent of a single-pole, 8 position switch whose position is specified by a 3-bit input address.

The 8230 incorporates an INHIBIT input which, when low, allows the one-of-eight inputs selected by the address to appear on the f output and, in complement, on the f output. With the INHIBIT input high, the f output is unconditionally low and the f output is unconditionally high. The 8230 is a functional and pin-for-pin replacement for the 9312.

The 8231 is a variation of the 8230 that provides open collector output \overline{f} for expansion of input terms. The 8232 is similar to the 8230 except in the effect of the INHIBIT input on the \overline{f} output. With the INHIBIT low, the selected input appears at the f output and, in complement, on the \overline{f} output. With the INHIBIT input high, both the f and the \overline{f} output are unconditionally low.

TRUTH TABLE

A	ADDRESS				DATA INPUTS								OUTPUT			
A ₂	A ₁	A ₀	17	16	I ₅	14	lз	12	11	10	ниі	f	8230 8231 f	8232 F		
0	0	0	×	x	x	x	×	x	x	1	0	1	0	0		
0	0	1	×	×	X	×	×	X	1	×	0	1	0	0		
0	1	0	ļ× ِ	x	x	×	×	1	×	×	0	1	0	0		
0	1	1	×Ι	×	×	×	1	×	×	×	0	1	0	0		
1	0	0	×	x	X	1	×	х	×	×	0	1	0	0		
1	0	1	×	x	1	×	×	х	x	×	0	1	0	0		
1 1	1	0	×	1	x	x	×	x	×.	x	0	1	0	0		
1	1	1	1	x	x	х	x	х	x	×	0	1	0	0		
0	0	0	x	х	x	х	х	х	х	0	0	0	1	1		
0	0	1	×	×	×	×	×	×	0	×	0	0	1 1	1		
0	1	0	×	×	×	×	×	0	×	x	0	0	1	1		
0	1	1	×	x	x	x	0	x	×	×	0	0	1 1	1		
1 1	0	0	x	×	x	0	x	×	×	×	0	0	1	1		
1	0	1	x	x	0	×.	×	х	x	×	0	0	1	1		
1	1 1	0	x	0	x	x	×	x	x	×	o	0	1	1		
1	1	1	0	x	x	×	×	×	×	x	0	0	1	1		
х	х	×	×	х	х	×	×	×	×	х	1	0	1	0		

x = don't care

LOGIC DIAGRAMS

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

	LIMITS				TEST CONDITIONS						
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A ₁	A ₂	A ₃	INH	DATA INPUT In	OUTPUTS	NOTES
"1" Output Voltage, Output f	2.6	3.5		v	*	*	*	V8.0	2.0V	-800µA	6, 11
Output f (8230, 8232)	2.6	3.5		v	*	*	*	2.0V	*	-800μA	6, 11
"1" Output Leakage Current,									4		
Output f (8231)			150	μА	0.8V	2.0V	2.0V	2.0V	0.6V		14
"0" Output Voltage			0.4	v	V8.0	0.8∨	0.8V	0.8V	0.8V	16mA	7, 11
"1" Input Current											
Inputs An, I _n			40	μΑ	4.5V	4.5V	4.5V		4.5 V		
Input INH, 8230 & 8231			80	μΑ				4.5V		ļ	
Input INH, 8232			80	μА				4.5V			
"O" Input Current											
A _n , I _n , INH (8230 & 8231)	-0.1	+	-1.6	mA	0.4V	0.4V	0.4V		0.4V		
INH, (8232)	-0.1		-3.2	mA				0.4∨			

 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

	LIMITS				TEST CONDITIONS						
CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	A	A	A	INH	DATA INPUT In	OUTPUTS f 7	NOTES
Propagation Delay											
A _n to f (8230, 8232)		19	30	ns							8
A _n to f (8231)		17	30	ns							8
I _n to f (8230, 8232)	ļ	11	20	ns						ļ	8
f to f		10	15	ns							8
I _n to f (8231)		13	24	ns							8
INH to f (8230, 8231)		18	30	ns							8
INH to f or \overline{f} (8232)		11	20	ns							8
Power Consumption/Supply Current											
8230, 8231			250/ 47.7	mW/mA	4.5V	4.5 V	4.5V	4.5V	0V		13
8232)		262/ 50.0	mW/mA	4.5V	4.5V	4.5 V	4.5 V	0V		13
Output Short Circuit Current								·			
Output f	-20		-70	mA	ov	ov	οv	0∨	4.5 V	0V	
Output f (8230, 8232)	-20		-70	mA	ov	ov	0V	ov	οv	0V	
Input Latch Voltage	5.5			v	10mA	10mA	10mA	10mA	10mA		12

^{*}See Truth Table for Logical Conditions

NOTES:

- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left
- All measurements are taken with ground pin tied to zero volts.
- Positive current is defined as into the terminal referenced.
- Positive logic definition: "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- Output source current is supplied through a resistor to ground.

- Output sink current is supplied through a resistor to V_{CC} .
- Refer to AC Test Figures. 8.
- One AC fan-out is defined as 50pF. 9.
- 10. Manufacturer reserves the right to make design and process changes and improvements.
- 11. By DC tests per the truth table, all inputs have guaranteed thresholds of 0.8V for logical "0" and 2.0V for logical "1".
- 12. This test guarantees operation free of input latch-up over the specific operating power supply voltage range.
- 13.
- All I_n data inputs are at OV. V_{CC} = 5.25V. Connect an external 1k resistor from V_{CC} to the output 14. terminal for this test.

SCHEMATIC DIAGRAMS

AC TEST FIGURE AND WAVEFORMS

NON-INVERTING PATHS

INPUT AT BNC

INVERTING PATHS

AC TEST CONDITIONS

				WAVE-			
STEP NO.	TYPE/S	DELAY FROM-TO	I ₀	l ₁	A ₀	INH	FORM TYPE
1	ALL	An to F	0 V	V _{CC} 0 V	P.G.	0 V	C, D
2	ALL	In to f	P. G.	0 V	0 V	0 V	C, D
2 3	ALL	f to f*	P. G.	0 V	0 V	0 V	C, D
4	8230 8231	INH to f	V _{cc}	0 V	0 V	P. G.	A, B
5 6	8232 8232	INH to f	0 V V _{cc}	0 V 0 V	0 V 0 V	P. G. P. G.	C, D C, D

NOTE: 1. P. G. = Pulse Generator *Both f and f are simultaneously loaded.

TYPICAL APPLICATIONS

