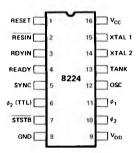
8224

CLOCK GENERATOR AND DRIVER FOR 8080A CPU

- Single Chip Clock Generator/Driver for 8080A CPU
- Power-Up Reset for CPU
- Ready Synchronizing Flip-Flop
- Advanced Status Strobe


- Oscillator Output for External System Timing
- Crystal Controlled for Stable System Operation
- Reduces System Package Count

The 8224 is a single chip clock generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer, to meet a variety of system speed requirements.

Also included are circuits to provide power-up reset, advance status strobe and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate clocks and timing for 8080A.

PIN CONFIGURATION

15> XTAL1 OSCILLATO 12> osc 14> XTAL2 13> TANK 11> CLOCK GEN. ÷9 10> \$2(TTL) 6> \$2D \$1 STSTB 7> 5> SYNC RESIN $|2\rangle$ Ð SCHMITT RESET 1> 3> RDYIN READY 4>

PIN NAMES

RESIN	RESET INPUT	XTAL 1	(CONNECTIONS		
RESET	RESET OUTPUT	XTAL 2	FOR CRYSTAL		
RDYIN	READY INPUT	TANK	USED WITH OVERTONE XTAL		
READY	READY OUTPUT	OSC	OSCILLATOR OUTPUT		
SYNC	SYNC INPUT	\$2 (TTL)	φ ₂ CLK (TTL LEVEL)		
STSTB	STATUS STB	Vcc	+5V		
	(ACTIVE LOW)	VDD	+12V		
¢1	8080	GND	ov		
¢2	CLOCKS	L			

BLOCK DIAGRAM

intel

FUNCTIONAL DESCRIPTION

General

The 8224 is a single chip Clock Generator/Driver for the 8080A CPU. It contains a crystal-controlled oscillator, a "divide by nine" counter, two high-level drivers and several auxiliary logic functions.

Oscillator

The oscillator circuit derives its basic operating frequency from an external, series resonant, fundamental mode crystal. Two inputs are provided for the crystal connections (XTAL1, XTAL2).

The selection of the external crystal frequency depends mainly on the speed at which the 8080A is to be run at. Basically, the oscillator operates at 9 times the desired processor speed.

A simple formula to guide the crystal selection is:

Crystal Frequency = $\frac{1}{t_{CY}}$ times 9					
Example 1:	(500ns t _{CY}) 2mHz times 9 = 18mHz*				
Example 2:	(800ns t _{CY}) 1.25mHz times 9 = 11.25mHz				

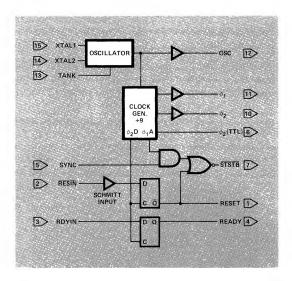
Another input to the oscillator is TANK. This input allows the use overtone mode crystals. This type of crystal generally has much lower "gain" than the fundamental type so an external LC network is necessary to provide the additional "gain" for proper oscillator operation. The external LC network is connected to the TANK input and is AC coupled to ground. See Figure 4.

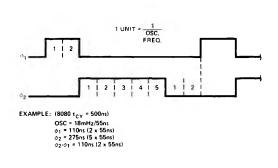
The formula for the LC network is:

$$F = \frac{1}{2\pi \sqrt{LC}}$$

The output of the oscillator is buffered and brought out on OSC (pin 12) so that other system timing signals can be derived from this stable, crystal-controlled source.

*When using crystals above 10mHz a small amount of frequency "trimming" may be necessary to produce the exact desired frequency. The addition of a small selected capacitance (3pF - 10pF) in series with the crystal will accomplish this function.


Clock Generator

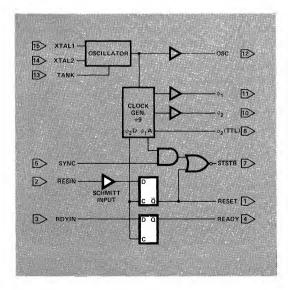

The Clock Generator consists of a synchronous "divide by nine" counter and the associated decode gating to create the waveforms of the two 8080A clocks and auxiliary timing signals.

The waveforms generated by the decode gating follow a simple 2-5-2 digital pattern. See Figure 2. The clocks generated; phase 1 and phase 2, can best be thought of as consisting of "units" based on the oscillator frequency. Assume that one "unit" equals the period of the oscillator frequency. By multiplying the number of "units" that are contained in a pulse width or delay, times the period of the oscillator frequency, the approximate time in nanoseconds can be derived.

The outputs of the clock generator are connected to two high level drivers for direct interface to the 8080A CPU. A TTL level phase 2 is also brought out ϕ_2 (TTL) for external timing purposes. It is especially useful in DMA dependant activities. This signal is used to gate the requesting device onto the bus once the 8080A CPU issues the Hold Acknowledgement (HLDA).

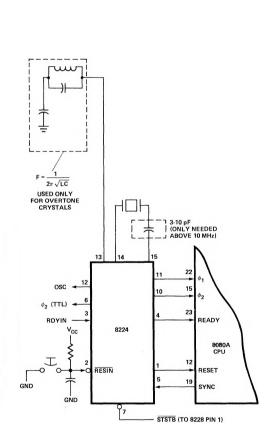
Several other signals are also generated internally so that optimum timing of the auxiliary flip-flops and status strobe (STSTB) is achieved.

STSTB (Status Strobe)


At the beginning of each machine cycle the 8080A CPU issues status information on its data bus. This information tells what type of action will take place during that machine cycle. By bringing in the SYNC signal from the CPU, and gating it with an internal timing signal (ϕ 1A), an active low strobe can be derived that occurs at the start of each machine cycle at the earliest possible moment that status data is stable on the bus. The STSTB signal connects directly to the 8228 System Controller.

The power-on Reset also generates $\overline{\text{STSTB}}$, but of course, for a longer period of time. This feature allows the 8228 to be automatically reset without additional pins devoted for this function.

Power-On Reset and Ready Flip-Flops


A common function in 8080A Microcomputer systems is the generation of an automatic system reset and start-up upon initial power-on. The 8224 has a built in feature to accomplish this feature.

An external RC network is connected to the $\overline{\text{RESIN}}$ input. The slow transition of the power supply rise is sensed by an internal Schmitt Trigger. This circuit converts the slow transition into a clean, fast edge when its input level reaches a predetermined value. The output of the Schmitt Trigger is connected to a "D" type flip-flop that is clocked with ϕ 2D (an internal timing signal). The flip-flop is synchronously reset and an active high level that complies with the 8080A input spec is generated. For manual switch type system Reset circuits, an active low switch closing can be connected to the RESIN input in addition to the power-on RC netnetwork.

The READY input to the 8080A CPU has certain timing specifications such as "set-up and hold" thus, an external synchronizing flip-flop is required. The 8224 has this feature built-in. The RDYIN input presents the asynchronous "wait request" to the "D" type flip-flop. By clocking the flip-flop with ϕ 2D, a synchronized READY signal at the correct input level, can be connected directly to the 8080A.

The reason for requiring an external flip-flop to synchronize the "wait request" rather than internally in the 8080 CPU is that due to the relatively long delays of MOS logic such an implementation would "rob" the designer of about 200ns during the time his logic is determining if a "wait" is necessary. An external bipolar circuit built into the clock generator eliminates most of this delay and has no effect on component count.

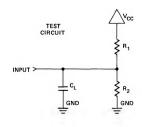
D.C. Characteristics

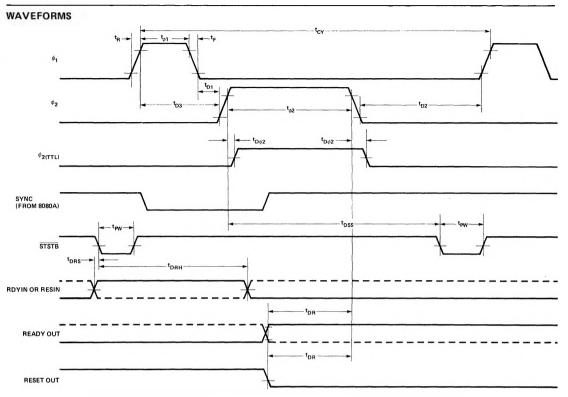
	Parameter	Limits				
Symbol		Min.	Тур.	Max.	Units	Test Conditions
۱ _F	Input Current Loading			25	mA	V _F = .45V
IR	Input Leakage Current			10	μA	V _R = 5.25V
V _C	Input Forward Clamp Voltage			1.0	V	I _C = -5mA
VIL	Input "Low" Voltage			.8	V	V _{CC} = 5.0V
VIH	Input "High" Voltage	2.6 2.0			V	Reset Input All Other Inputs
VIH-VIL	REDIN Input Hysteresis	.25			m∨	V _{CC} = 5.0V
VOL	Output "Low" Voltage			.45	V	(ϕ_1, ϕ_2) , Ready, Reset, STSTB $I_{OL} = 2.5 \text{mA}$
				.45	V	All Other Outputs I _{OL} = 15mA
VOH	Output "High" Voltage					
	ϕ_1, ϕ_2	9.4			V	I _{OH} = -100μA
	READY, RESET	3.6			V	I _{OH} = -100μA
	All Other Outputs	2.4			V	I _{OH} = -1mA
lsc ^[1]	Output Short Circuit Current (All Low Voltage Outputs Only)	-10		-60	mA	V _O = 0V V _{CC} = 5.0V
lcc	Power Supply Current			115	mA	
IDD	Power Supply Current			12	mA	

 $T_A = 0^{\circ}C$ to $70^{\circ}C$; $V_{CC} = +5.0V \pm 5\%$; $V_{DD} = +12V \pm 5\%$.

Note: 1. Caution, ϕ_1 and ϕ_2 output drivers do not have short circuit protection

CRYSTAL REQUIREMENTS


Tolerance: .005% at 0°C -70°C Resonance: Series (Fundamental)* Load Capacitance: 20-35pF Equivalent Resistance: 75-20 ohms Power Dissipation (Min): 4mW


*With tank circuit use 3rd overtone mode.

A.C. Characteristics

 V_{CC} = +5.0V ± 5%; V_{DD} = +12.0V ± 5%; T_A = 0°C to 70°C

	Parameter	Limits				Test
Symbol		Min.	Тур.	Max.	Units	Conditions
t _{ø1}	ϕ_1 Pulse Width	2tcy 9 - 20ns	·			
t _{ø2}	ϕ_2 Pulse Width	<u>5tcy</u> - 35ns				
t _{D1}	ϕ_1 to ϕ_2 Delay	0			ns	
t _{D2}	ϕ_2 to ϕ_1 Delay	$\frac{2tcy}{9}$ - 14ns]	C _L = 20pF to 50pl
t _{D3}	ϕ_1 to ϕ_2 Delay	2tcy 9		$\frac{2tc\gamma}{9}$ + 20ns]	
tR	ϕ_1 and ϕ_2 Rise Time			20]	
tF	ϕ_1 and ϕ_2 Fall Time			20	1	
t _{Dφ2}	ϕ_2 to ϕ_2 (TTL) Delay	-5		+15	ns	φ ₂ TTL,CL=30 R ₁ =300Ω R ₂ =600Ω
t _{DSS}	ϕ_2 to STSTB Delay	<u>6tcy</u> - 30ns 9		6tcy 9		
tpw	STSTB Pulse Width	<u>tcy</u> - 15ns				STSTB, CL=15pl R ₁ = 2K
tDRS	RDYIN Setup Time to Status Strobe	50ns - <u>4tcy</u> 9				$R_2 = 4K$
tDRH	RDYIN Hold Time After STSTB	4tcy 9	·]	
t _{DR}	RDYIN or RESIN to ϕ_2 Delay	4tcγ 9 - 25ns				Ready & Reset CL=10pF R ₁ =2K R ₂ =4K
tCLK	CLK Period		tcy 9			
f _{max}	Maximum Oscillating Frequency	18.432			MHz	
C _{in}	Input Capacitance			8	pF	V _{CC} =+5.0V V _{DD} =+12V V _{BIAS} =2.5V f=1MHz

VOLTAGE MEASUREMENT POINTS: ϕ_1 , ϕ_2 Logic "0" = 1.0V, Logic "1" = 8.0V. All other signals measured at 1.5V.

EXAMPLE:

A.C. Characteristics (For t_{CY} = 488.28 ns)

$T_A = 0^\circ C t$	o 70°C; V _{CC}	= +5V ± 5%;	V _{DD} = +12V ± 5%
---------------------	-------------------------	-------------	-----------------------------

	Parameter	Limits				
Symbol		Min.	Тур.	Max.	Units	Test Conditions
t _{ø1}	ϕ_1 Pulse Width	89			ns	t _{CY} =488.28ns
t _{ø2}	ϕ_2 Pulse Width	236			ns	
t _{D1}	Delay ϕ_1 to ϕ_2	0			ns	
t _{D2}	Delay ϕ_2 to ϕ_1	95			ns	$\phi_1 \& \phi_2$ Loaded to
t _{D3}	Delay ϕ_1 to ϕ_2 Leading Edges	109		129	ns	C _L = 20 to 50pF
t _r	Output Rise Time			20	ns	
t _f	Output Fall Time			20	ns	
tDSS	ϕ_2 to STSTB Delay	296		326	ns	
t _{Dφ2}	ϕ_2 to ϕ_2 (TTL) Delay	-5		+15	ns	
tpw	Status Strobe Pulse Width	40			ns	Ready & Reset Loaded
t _{DRS}	RDYIN Setup Time to STSTB	-167			ns	to 2mA/10pF
tDRH	RDYIN Hold Time after STSTB	217			ns	All measurements
tDR	READY or RESET to ϕ_2 Delay	192			ns	referenced to 1.5V unless specified
f	Oscillator Frequency			18.432	MHz	otherwise.