2518-N • 2519-N

DESCRIPTION

The 2518 32-bit and the 2519 40-bit recirculating static shift registers consist of enhancement mode p-channel silicon gate MOS devices intergrated on a single monolithic chip. Internal recirculation logic plus TTL/DTL level clock signals are provided for maximum interfacing ease.

TRUTH TABLE

RECIR- CULATE	INPUT	FUNCTION			
1	0	Recirculate			
1	1	Recirculate			
0	0	"0" is written			
0	1	"1" is written			

Data is read out when output enable is low. Output is tristated when output enable is high.

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS1

PARAMETER		RATING	UNIT	
	Temperature range		°C	
T_A	Operating ²	0 to +70		
TSTG	Storage	-65 to 150	(
Po	Power dissipation at T _A = 70°C	640	mW	
	Data and clock input voltages and supply voltages with respect to Vcc	0.3 to -20	V	

2518-N • 2519-N

DC ELECTRICAL CHARACTERISTICS $T_A = 0$ °C to +70°C, $V_{CC} = +5V \pm 5$ %, $V_{GG} = -12V \pm 5$ %

unless otherwise specified.3,4,5,6,7

PARAMETER		× ×	LIMITS			
		TEST CONDITIONS	Min	Тур	Max	UNIT
	Input voltage8					V
VIL	Low		1	1 }	0.6	1
ViH	High		3.4	1 1	5.3	i
VILC	Clock low			1 1	0.6	
VIHC	Clock high		3.4	1	5.3	
	Output voltage					٧
Vol	Low	$I_{OL} = 1.6 mA$	1	0.5		-
Vон	High	$I_{OH} = 100 \mu A$	3.8]		
	Leakage current	T _A = 25°C				nA
ILO	Output			10	1000	
ILC	Clock	V _{ILC} = GND		10	500	l
	Input load current	V _{IN} = -5.5V, T _A = 25°C		10	500	nΑ
lgg	Supply current	Continuous operation,		16	25	mA
		T _A = 25° C, f = 1.5MHz		L		
	Capacitance	At 1MHz, V _{AC} = 25mV p-p				pF
CIN	Input	VIN = VCC	1	5	7	1
Cφ	Clock	$V\phi = V_{CC}$	ł	6	7	1

AC ELECTRICAL CHARACTERISTICS $T_A = 0$ °C to +70°C, $V_{CC} = +5V \pm 5\%$, $V_{GG} = -12V \pm 5\%$, $V_{ILC} = 0.4V$ to 4.0V

				LIMITS			
PARAMETER		ТО	FROM	Min	Тур	Max	TINU
Freq.	Clock rep rate			dc	3	2	MHz
	Pulse width						μS
t opw	Clock ¹⁰			.300		100	,
TOPW	Clock			.200		dc	
	Setup and hold time	T T T T T					ns
tos	Setup time	Clock in	Data in	100		:	
ton	Hold time	Data in	Clock in	70			ł
trs	Setup time	Clock	Recirculate	150			}
trh	Hold time	Recirculate	Clock	50			
t _R ,t _F	Clock pulse transition					5	μS
tA	Clock to data out delay	Data	Clock		300	350	ns

NOTES

- Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 125°C C/W, junction to ambient.
- 3. All inputs are protected against static charge.
- 4. Parameters are valid over operating temperature range unless specified.
- 5. All voltage measurements are referenced to ground.
- 6. Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C and typical supply voltages.
- 8. Guaranteed input levels are stated for worst case conditions including a ±5% variation in V_{CC} and a temperature variation of 0°C to +70°C. Actual input requirements with respect to V_{CC} are V_{IH} = V_{CC} -1.85V and V_{IL} = V_{CC} 4.15V.
- 9. VOL is dependent on RL and input characteristics of driven gate.
- 10. Input rise and fall times = 10ns. Output load is 1 TTL gate.
- 11. For static operation, clock must be stopped in TTL high state in order to retain data (see clock pulse width specification).

2518-N • 2519-N

TIMING DIAGRAM

