

DUAL 100-BIT STATIC 2010 SHIFT REGISTER DC TO 3 MHZ

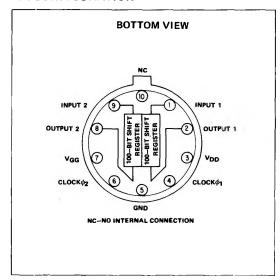
(FOR REFERENCE ONLY, NOT RECOMMENDED FOR NEW DESIGNS)

METAL GATE MOS 2000 SERIES

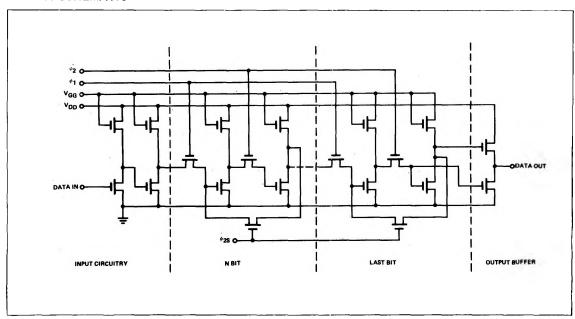
DESCRIPTION

The N2010K Dual 100-Bit Static Shift Register is designed for use at shift rates from 0 to 3 MHz.* The device employs "P" channel enhancement mode MOS techniques. Power supply requirements are -14 and -28 Vdc. Clocking is provided by two external -28 volt clock phases. A delayed second clock phase (ϕ_{2S}) is generated on the chip.

Data is transferred into the register during ϕ_1 . Output data appears on the negative going edge of ϕ_2 . For static operation, ϕ_1 must be a "0" and ϕ_2 a "1".


The N2010K is a direct pin replacement for the S2005K/ 3003 1MHz Static Shift Register.

°(25°)


ABSOLUTE MAXIMUM RATINGS:

VDD with respect to Gnd -16V to 0.3V VGG with respect to Gnd -30 to 0.3V -30V to 0.3V Clock and Input with respect to Gnd Operating Temperature 0°C to +70°C Storage Temperature -55°C to +150°C

PIN CONFIGURATION

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (Notes: 1, 2, 3, 4, 9)

RECOMMENDED POWER SUPPLY VOLTAGES: V_{DD} = -14 +1 Vdc, V_{GG} = -28 ±1Vdc

CHARACTERISTICS	LIMITS				TEST CONDITIONS							
	MIN	ТҮР	MAX	UNITS	TEMP	V _{DD}	V _{GG}	Vin	V _{φ1}	ν _{φ2}	OUTPUT	NOTES
"1" Output Voltage	-8	-10		٧	25	-13	-27	-7	-27	-27		5, 7
"0" Output Voltage		-0.3	-1.0	V	25	-15	-29	-2	-29	-29		5, 7
Output Drive Capability	-4	-6		٧	25	-13	-27	-7	-27	-27		$R_L = 4k\Omega$ to Gnd
Input Leakage Current					t	ļ — —						
Data Inputs			-0.5	μА	25	0	0	-15	0	0		
Clock Inputs												
φ1			-50	μА	25	0	0	0	-28	0		
ϕ_{2}			-50	μА	25	0	0	0	0	-28		
Output Impedance			1.5	kΩ	25	-13	-27	-2	-27	-27	0 to -1V	
Input Capacitance												
Data Inputs		3	5	ρF	25	-14	-28	0	0	0		8
Clock Inputs		16	33	pF	25	-14	-28	0	0	0		8
Power Supply Current												
IDD		-14	-20	mA	25	-15	-29		0	-29		
^I GG		-0.8	-3.0	mA	25	-15	-29		0	-29		
Propagation Delay (tdp) from ϕ_2		200	250	ns	25	-14	-28		-28	-28		6, 7

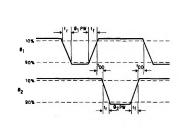
NOTES:

- 1. Parameter valid at +25°C unless otherwise specified
- All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are tied to ground.
- interenced are tied to ground.

 Negative logic definition: "DOWN" Level = "11", "UP!" Level = "0".

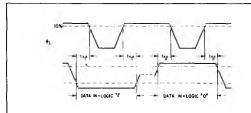
 Minufacturer reserves the right to make design and process changes and improvements.

 Output vehildsgelevale solid from DC to 3 MHz.


- 6. See output timing diagram. 7. Output timing diagram. 7. Output load is 100 and 100 and 1 M Ω 8. t=1 MHz, Vac = 25mV zms. All plus not specifically referenced are ried to guard terminal.
- for capacitance tests. Output pins are left open.

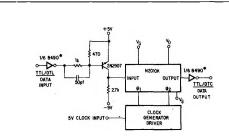
 9. All typical values are at 25°C and nominal supply voltages

TYPICAL PERFORMANCE CHARACTERISTICS


CLOCK REQUIREMENTS

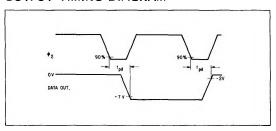
VOLTAGE LEVELS	MIN	NOM	MAX	UNITS
φ ₁ φ ₂ "0"	0	-1	∙2.0	Volts
φ ₁ φ ₂ "1"	-27	-28	-29	Volts
TIMING				
t _r & t _f	.010		5	μsec
φ ₁ PW	0.10		10	µзес
ϕ_2 PW	0.15			изес
^t DO	0			изес
Clock Repetition Rate	0		3	MHz

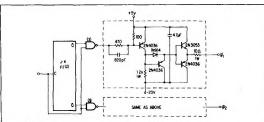
Note: ϕ_2 may not be at "0" logic level for more than 10 μ s.


INPUT REQUIREMENTS

CHARACTERISTIC	MIN	MAX	UNITS
Data in "0"	+0.3	-2.0	Volts
Data in "1"	-7.0		Volts
t1 & t0	o	1	µsес

Note: Data In must be stable between the 10% points of ϕ_1 .


TTL INTERFACE REQUIREMENTS


NOTES:

- Register ground (V_s) is tied to the bipolar integrated circuit V_{CC} power supply for proper biasing.
- 2. $V_s = +5VDC$ $V_D = -9 VDC$ $V_G = -23 VDC$
- *3. Signetics Corp. N8490A

OUTPUT TIMING DIAGRAM

CLOCK DRIVER

NOTES:

- At high repetition rates and/or high capacitance loads, the transistors may require heat sinking, i.e., 1000 pF.at 3MHz.
- 2. 1/2 N8822B, SP322B etc.
- 3. 1/2 N8880A, SP387A etc.