

DUAL 3-INPUT 10110 3-OUTPUT OR GATE

10110B,F: -30 to +85°C

DIGITAL 10,000 SERIES ECL

LOGIC DIAGRAM

CIRCUIT SCHEMATIC

DESCRIPTION

The 10110 is a dual high speed 3-input 3-output OR gate. The 10110 is designed to drive up to three transmission lines simultaneously. The multiple outputs of this device also allow the wire."OR"-ing of several levels of gating for minimization of gate and package count.

The ability to control three parallel lines from a single point makes the 10110 particularly useful in clock distribution applications where minimum clock skew is desired.

FEATURES

- FAST PROPAGATION DELAY = 2.4 ns TYP (ALL OUTPUTS LOADED)
- POWER DISSIPATION = 150 mW/PACKAGE TYP (NO LOAD)
- VERY HIGH FANOUT CAPABILITY – CAN DRIVE SIX 50 Ω LINES
- HIGH Z INPUTS INTERNAL 50 k Ω PULLDOWNS
- HIGH IMMUNITY FROM POWER SUPPLY VARIA-TIONS: VEE = -5.2 V ±5% RECOMMENDED
- OPEN EMITTERS FOR BUSSING AND LOGIC CAPABILITY

TEMPERATURE RANGE

• -30 to +85°C Operating Ambient

PACKAGE TYPE

- B: 16-Pin Silicone DIP
- F: 16-Pin CERDIP

TEST VOLTAGE VALUES

ELECTRICAL CHARACTERISTICS

(At Listed Voltages and Ambient Temperatures).									ngerature	VIH mex	VIL min	VIHA min	VILA mex	VEE		
										-30° C	-0.890	-1.890	-1.205	-1.500	-5.2	
+26											-0.810	-1.850	0 -1.105	-1.475	-5.2	
_										+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
Characteristic	Symbol	Pin Under Test	10110 Test Limits								TEST VOLTAGE APPLIED TO PINS LISTED BELOW:					
			-30°C				+85°C			,	T T			r	(Vcc)	
			Min '	Max	Min	Тур	Мак	Min	Max	Unit	VIH mex	VIL min	VIHA min	VILA max	VEE	Gnd
Power Supply Drain Current	1E	8	2	1	-	-	38	-	-	mAde	-	-	-	-	8	1,15,16
Input Current	linH	5,6,7	-	1	÷.	-	435		-	#Adc		-	-	-	8	1,15,16
	link	5,6,7		1	0.5	-	-	Ţ	-	µAdc	-		-	-	8	1,15,16
Logic "1" Output Voltage	VOH	2	-1.060	0 890	-0.960	-	0 810	-0.890	-0.700	Vdc	5	~	-	-	8	1,16,16
		3	- 1.060	-0 890	-0 960	-	-0.810	-0.890	-0.700	Vric	6	-	-	-	8	1,15,16
		4	-1.060	-0.890	-0.960	-	-0.810	-0.890	-0.700	Vdc	7		-	-	8	1,15,16
Lagic "O" Output Voltege	VOL	2	-1.890	-1.675	-1.860	-	-1.650	-1.825	-1.615	Vdc	-	5	1	-	8	1,15,16
		3	-1.890	-1.675	-1.850	-	-1.660	-1.825	-1.615	Vdc	-	6		-	8	1,15,16
		4	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	7		-	8	1,16,16
Logic "1" Threshold Voltage	VOHA	2	-1.080	-	0.980		-	-0.910	-	Vdc		-	5	-	8	1,15,16
		3	-1.080	-	-0.980	-	-	-0.910	-	Vdc			6	-	8	1,15,16
		4	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	~	7	-	8	1,16,16
Logic "O" Threshold Voltage	VOLA	2	-	-1.655	-	0	-1.630	-	-1.595	Vdc		< H)		5	8	1,15,16
	100.000	3		-1.655			~1.630	-	-1.595	Vdc	-		-	6	8	1,15,16
		4	-	-1.655	-	-	-1.630	-	-1.595	Vdc	- E		-	7	8	1,16,16
Switching Times ** (50-ohm load)			199				1.0						Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Datay	15+ 2+	2	1.4	3.5	1.4	2.4	3.5	1.5	3.8	ns	-		5	2	8	1,15,16
	15 . 2-	2		1	1						-	-	1	2		
	15+ 3+	3									5 m .	-		3		
	15-3-	3										-		3		
	15+ 4+	4			1 mar 1						-	100		4		
	16-4-	4									dia.	-		4		
File Time (20% to 80%)	124	2	1.0		1.1	2.2		1.2			-	-	1	2		
	134	3									-	-		3		
	14.	4									-	-		4		
Fall Time (20% to 80%)	12_	2									-	-		2		
	13.	3									~	<u></u>		3		
	ta_	4			1	T	1	1	1	1		-		4		- T
																4

*Individually test each input using the pin connections shown.

** Unused outputs connected to a 50-ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

PROPAGATION DELAY WAVEFORMS @ 25°C

NOTES:

- 1. Each ECL 10,000 series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 5 mV with an air flow of 200 linear fpm, Outputs are terminated through a 50-ohm resistor to 2.0 volts.
- 2. For AC tests, all input and output cables to the scope are equal lengths of 50-ohm coaxial cable. Wire length should be < 1/4Inch from TP_{in} to input pin and TP_{out} to output pin. A 50-ohm termination to ground is located in each scope input. Unused outputs are connected to a 50-ohm resistor to ground.
- 3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
- 4. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.