DIGITAL 10,000 SERIES ECL

LOGIC DIAGRAM

CIRCUIT SCHEMATIC

TEMPERATURE RANGE

- -30 to $+85^{\circ} \mathrm{C}$ Operating Ambient

PACKAGE TYPE

B: 16-in Silicone DIP
F: 16-Pin CERDIP

ELECTRICAL CHARACTERISTICS
(At Listed Voltages and Ambient Temperatures).

Charseteristic	Symbol	Pin Under Tent	${ }^{*} \mathrm{BE}^{\text {² }} \mathrm{C}$								-0.700	-1.825	-1.035	-1.440	-5.2	$\begin{gathered} \left(\mathbf{V}_{\mathbf{c c}}\right) \\ \mathbf{G n d} \end{gathered}$
						0110	Limits			Unit	TEST VOLTAGE APPLIED TOPINS LISTED BELOW:					
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			+85 ${ }^{\circ} \mathrm{C}$								
			Min	Max	Min	Typ	Max	Min	Max		$\mathrm{V}_{\mathrm{IH} \text { max }}$	$V_{\text {IL }}^{\text {min }}$	$V_{\text {IHA }}$ min	$V_{\text {ILA max }}$	VEE	
Power Supdiv Drain Current	IE	8	-	-	-	-	38	-	-	made	-	-	-	-	8	1,15,16
Input Current	I inH.	5,6,7	-	-	-	-	435	-	-	$\mu \mathrm{Adc}$	-	-	-	-	8	1,15,16 ${ }^{\text {(1, }}$
	linh	5,6.7	-	-	0.5	-	-	-	-	$\mu \mathrm{Adc}$	-	-	-	-	8	1,15,16
Logic "1" Output Voltage	VOH	2	-1.060	0890	-0.960	-	-0810	-0.890	-0.200	Voc	5	-	-	-	8	1,15,16
		3	- 1060	-0890	-0960	-	-0.810	-0.890	-0.700	Vars	6	-	-	-	8	1.15.16
		4	-1.060	-0.890	-0.960	-	-08810	-0.890	0.700	Vac	7	-	-	-	8	1,15.16
Legic "0* Outpur valtege	VOL	2	-1.890	-1.675	-1.860	-	-1.650	${ }^{-1.825}$	-1.615	Vdc	-	5	-	-	8	1.15 .16
		3	-1.890	-1.675	-1.850	-	-1.650	-1.825	-1.615	Vdc	-	6	-	-	8	1.15.16
		4	-1.890	-1.676	-1.850	-	-1.650	-1.825	-1.615	Vde	-	7	~	\sim	8	1.16.16
Logic "1" Thiashold Voltage	VOHA	2	-1.080	-	0.980	-	-	-0.910	-	Vdc	-	-	5	-	8	1.16,16
		3	-1.080	-	-0.980	-	-	-0.810	-	Vdc	-	-	6	-	8	1,15.16
		4	-1.080	-	-0.980	-	-	-0.910	-	Vdc	-	-	7	-	8	1,16.16
Logic "0" Threstold Voltage	Vola	2	-	-1.665	-	-	-1.630	-	-1.583	Vdc	-	-	-	5.	8	1,16.16
		3	-	-1.655	-	-	-1.630	-	-1.595	Vde	-	-	-	6	8	1,15.16
		4	-	-1,655	-	-	-1.630	-	-1.595	Vac	-	-	-	7	8	1.15.16
Switching Timas ${ }^{\text {-4 }}$(50-ahm loadPropegation Delav	15+24 '5. 2- 154 3+ '5-3- 154.44 16-4-			3.5									Pulue in	Pulte Out	-3.2 V	42.0 V
		2	$\left.\right\|_{1.0} ^{1.4}$		1.4	2.4	3.5	1.5	3.8	ns	-	-	5	2	8	1.15.16
		2									-	-		2		
		3									-	-		3		
		3									-	-		3		
		4			,	,		,			-	-		4		
		4			1	1		1			-	-		4		
Rise Time t20\% to 80\%)	$12+$	2			1,1	2.2		1.2	,		-	-		2		
	13.	3									-	-		3		
	t/4+	4									-	-		4		
fall time (20\% to B0\%)	I2-	2									-	-		2		,
	$13-$	3			,	+	,	,	,	+	-	-	,	3		,
		4				1	1			1	-	-	1	4		1

- Individually test each input using the pin connections shown.
- Unused outputs connected to a $\mathbf{5 0}$ - ohm resistor to ground.

SWITCHING TIME TEST CIRCUIT

INPUT PULSE
$\mathrm{t}+=\mathrm{t}-=2.0 \pm 0.2 \mathrm{~ns}$
(20\% to 80%)

PROPAGATION DELAY WAVEFORMS @ $25^{\circ} \mathrm{C}$

NOTES:

1. Each ECL $\mathbf{1 0 , 0 0 0}$ series device has been designed to meet the DC specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Voltage levels will shift approximately 5 mV with an air flow of 200 linear fpm. Outputs are terminated through a $\mathbf{5 0}$-ohm resistor to $\mathbf{2 . 0}$ volts.
2. For AC tests, all input and output cables to the scope are equal lengths of 50 -ohm coaxial cable. Wire length should be $<1 / 4$ inch from $T P_{\text {in }}$ to input pin and $T P_{\text {out }}$ to output pin. A $50-\mathrm{ohm}$ termination to ground is located in each scope input. Unused outputs are connected to a 50 -ohm resistor to ground.
3. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
4. All voltage measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.
